• Title/Summary/Keyword: liquefaction potential

Search Result 133, Processing Time 0.029 seconds

Selection of Ground Motions for the Assessment of Liquefaction Potential for South Korea (국내 액상화 평가를 위한 지진파 선정)

  • Jang, Young-Eun;Seo, Hwanwoo;Kim, Byungmin;Han, Jin-Tae;Park, Duhee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.111-119
    • /
    • 2020
  • Recently, some of the most destructive earthquakes have occurred in South Korea since earthquake observations began in 1978. In particular, the soil liquefactions have been reported in Pohang as a result of the ML 5.4 earthquake that occurred in November 2017. Liquefaction-induced ground deformations can cause significant damage to a wide range of buildings and infrastructures. Therefore, it is necessary to take practical steps to ensure safety during an earthquake. In the current seismic design in South Korea, the Hachinohe earthquake and Ofunato earthquake recorded in Japan, along with artificial earthquakes, have been generally used for input motions in dynamic analyses. However, such strong ground motions are only from Japan, and artificial earthquake ground motions are different from real ground motions. In this study, seven ground motions are selected, including those recorded in South Korea, while others are compatible to the current design spectra of South Korea. The effects of the newly selected ground motions on site response analyses and liquefaction analyses are evaluated.

Use of infinite elements in simulating liquefaction phenomenon using coupled approach

  • Kumari, Sunita;Sawant, V.A.
    • Coupled systems mechanics
    • /
    • v.2 no.4
    • /
    • pp.375-387
    • /
    • 2013
  • Soils consist of an assemblage of particles with different sizes and shapes which form a skeleton whose voids are filled with water and air. Hence, soil behaviour must be analyzed by incorporating the effects of the transient flow of the pore-fluid through the voids, and therefore requires a two-phase continuum formulation for saturated porous media. The present paper presents briefly the Biot's basic theory of dynamics of saturated porous media with u-P formulation to determine the responses of pore fluid and soil skeleton during cyclic loading. Kelvin elements are attached to transmitting boundary. The Pastor-Zienkiewicz-Chan model has been used to describe the inelastic behavior of soils under isotropic cyclic loadings. Newmark-Beta method is employed to discretize the time domain. The response of fluid-saturated porous media which are subjected to time dependent loads has been simulated numerically to predict the liquefaction potential of a semi-infinite saturated sandy layer using finite-infinite elements. A settlement of 17.1 cm is observed at top surface. It is also noticed that liquefaction occurs at shallow depth. The mathematical advantage of the coupled finite element analysis is that the excess pore pressure and displacement can be evaluated simultaneously without using any empirical relationship.

A Study on the Effects of Sample Preparation on Liquefaction Estimation Using Cyclic Triaxial Test Conditions (시편의 성형방법이 반복삼축압축시험을 이용한 지반의 액상화 평가에 미치는 영향에 관한 연구)

  • 이익효;김동수;김준석;황지훈;서성호
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.57-64
    • /
    • 2003
  • The liquefaction potential of saturated sands under seismic loading conditions has been carefully considered by many investigations. Typical of these investigations is the laboratory determination of cyclic strength of sands by means of cyclic triaxial tests. This study was conducted to investigate the effects of the method of sample preparation on the liquefaction characteristics of remolded samples of saturated uniform sands. Cyclic triaxial tests were performed on saturated uniform sand compacted to the same density by 3 different procedures of pluvial compaction through air, pluvial compaction through water and vibratory compaction. It was validated that the cyclic stress ratio of remolded saturated uniform sands by different compaction procedures at the same density was very different.

Liquefaction Potential for Coal Ash Mixed Sand by Strain-Controlled Cyclic Triaxial Test (변형률제어 진동삼축시험법을 이용한 석탄회가 혼합된 모래시료의 액상화 평가)

  • 이병식;정경순
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.5
    • /
    • pp.129-136
    • /
    • 2001
  • 본 논문에서는 석탄회 매립지반의 액상화 가능성을 평가하기 위해 순수 모래시료와 더불어서 모래시료와 석탄회가 혼합된 모래시료에 대한 일련의 진동삼축실험을 변형률제어 방법으로 수행하였다. 실험결과 진동하중에 의해서 시료 내에 발생하는 간극수압의 크기는 작용하는 전단변형률의 크기에 심각하게 영향을 받고, 작용하는 전단변형률이 지반의 한계전단변형률 보다 작은 경우에는 진동수가 높은 조건에서도 간극수압이 발생하지 않음을 알았다. 또한 전단변형률이 약 0.1%보다 작고 한계전단변형률에 가까운 경우에는 순수 모래시료와 비교하여 본 논문에서 조사한 석탄회 함유율 범위 (10%~30%)의 시료에서 간극수압이 더 크게 발생하였다. 반면에, 전단변형률이 큰 경우에는 순수 모래시료에서 간극수압이 크게 발생하는 추세를 보였다. 반복 전단에 따른 간극수압의 발생량은 전반적으로 석탄회 함유율이 증가할수록 커지는 경향을 보였다. 이러한 결과를 근거로 해안이나 하천에 인접한 한계지 개발에 있어서 사질토에 석탄회를 혼합 매립하여 지반을 조성하는 경우에 액상화에 대해서 불안정한 지반이 될 가능성이 있는 것으로 판단되었다.

  • PDF

Numerical Simulation of Dynamic Response of Seabed and Structure due to the Interaction among Seabed, Composite Breakwater and Irregular Waves (II) (불규칙파-해저지반-혼성방파제의 상호작용에 의한 지반과 구조물의 동적응답에 관한 수치시뮬레이션 (II))

  • Lee, Kwang-Ho;Baek, Dong-Jin;Kim, Do-Sam;Kim, Tae-Hyung;Bae, Ki-Seong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.3
    • /
    • pp.174-183
    • /
    • 2014
  • Seabed beneath and near coastal structures may undergo large excess pore water pressure composed of oscillatory and residual components in the case of long durations of high wave loading. This excess pore water pressure may reduce effective stress and, consequently, the seabed may liquefy. If liquefaction occurs in the seabed, the structure may sink, overturn, and eventually increase the failure potential. In this study, to evaluate the liquefaction potential on the seabed, numerical analysis was conducted using the expanded 2-dimensional numerical wave tank to account for an irregular wave field. In the condition of an irregular wave field, the dynamic wave pressure and water flow velocity acting on the seabed and the surface boundary of the composite breakwater structure were estimated. Simulation results were used as input data in a finite element computer program for elastoplastic seabed response. Simulations evaluated the time and spatial variations in excess pore water pressure, effective stress, and liquefaction potential in the seabed. Additionally, the deformation of the seabed and the displacement of the structure as a function of time were quantitatively evaluated. From the results of the analysis, the liquefaction potential at the seabed in front and rear of the composite breakwater was identified. Since the liquefied seabed particles have no resistance to force, scour potential could increase on the seabed. In addition, the strength decrease of the seabed due to the liquefaction can increase the structural motion and significantly influence the stability of the composite breakwater. Due to limitations of allowable paper length, the studied results were divided into two portions; (I) focusing on the dynamic response of structure, acceleration, deformation of seabed, and (II) focusing on the time variation in excess pore water pressure, liquefaction, effective stress path in the seabed. This paper corresponds to (II).

Numerical Simulation of Dynamic Response of Seabed and Structure due to the Interaction among Seabed, Composite Breakwater and Irregular Waves (I) (불규칙파-해저지반-혼성방파제의 상호작용에 의한 지반과 구조물의 동적응답에 관한 수치시뮬레이션 (I))

  • Lee, Kwang-Ho;Baek, Dong-Jin;Kim, Do-Sam;Kim, Tae-Hyung;Bae, Ki-Seong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.3
    • /
    • pp.160-173
    • /
    • 2014
  • Seabed beneath and near coastal structures may undergo large excess pore water pressure composed of oscillatory and residual components in the case of long durations of high wave loading. This excess pore water pressure may reduce effective stress and, consequently, the seabed may liquefy. If liquefaction occurs in the seabed, the structure may sink, overturn, and eventually increase the failure potential. In this study, to evaluate the liquefaction potential on the seabed, numerical analysis was conducted using the expanded 2-dimensional numerical wave tank to account for an irregular wave field. In the condition of an irregular wave field, the dynamic wave pressure and water flow velocity acting on the seabed and the surface boundary of the composite breakwater structure were estimated. Simulation results were used as input data in a finite element computer program for elastoplastic seabed response. Simulations evaluated the time and spatial variations in excess pore water pressure, effective stress, and liquefaction potential in the seabed. Additionally, the deformation of the seabed and the displacement of the structure as a function of time were quantitatively evaluated. From the results of the analysis, the liquefaction potential at the seabed in front and rear of the composite breakwater was identified. Since the liquefied seabed particles have no resistance to force, scour potential could increase on the seabed. In addition, the strength decrease of the seabed due to the liquefaction can increase the structural motion and significantly influence the stability of the composite breakwater. Due to limitations of allowable paper length, the studied results were divided into two portions; (I) focusing on the dynamic response of structure, acceleration, deformation of seabed, and (II) focusing on the time variation in excess pore water pressure, liquefaction, effective stress path in the seabed. This paper corresponds to (I).

A Critical Liquefaction Resistible Characteristic of Saturated Sands Based on the Cyclic Triaxial Test Under Sinusoidal Loadings (정현하중재하 진동삼축시험에 기초한 포화사질토의 액상화 한계저항특성)

  • 최재순;김수일
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.147-158
    • /
    • 2004
  • Laboratory dynamic tests are carried out to assess the liquefaction potential of saturated sands in most countries. However, simple results such as the maximum cyclic shear stress and the number of cycles at initial liquefaction are used in the experimental assessment of liquefaction potential, even though various results can be obtained from the dynamic test. In addition, it seemed to be inefficient because more than three dynamic tests with different stress ratio have to be carried out to draw a liquefaction resistance experimental curve. To improve the present assessment method fur liquefaction potential, a new critical resistible characteristic far soil liquefaction is proposed and verified through conventional cyclic triaxial tests with Jumunjin sand. In the proposed method, various experimental data such as effective stress path, stress-strain relationship, and the change of excess pore water pressure can be used in the determination of cumulative plastic shear strains at every 1/4 cycle. Especially, the critical cumulative plastic shear strain to initiate liquefaction can be defined in a specific point called a phase change point in the effective stress path and it can be calculated from a hysteric curve of stress-strain relationship up to this point. Through this research, it is found that the proposed cumulative plastic shear strain can express the dissipated energy to resist dynamic loads and consider the realistic soil dynamic behavior of saturated sands reasonably. It is also found that the critical plastic shear strain can be used as a registible index of soils to represent the critical soil dynamic state, because it seems to include no effect of large deformation.

Development of Modified Disturbed State Concept Model for Liquefaction Analysis (액상화 해석을 위한 수정교란상태개념 모델 개발)

  • Park, Keun-Bo;Choi, Jae-Soon;Park, Inn-Joon;Kim, Ki-Poong;Kim, Soo-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.3
    • /
    • pp.35-51
    • /
    • 2008
  • In this paper, the application of the DSC model to the analysis of liquefaction potential is examined through experimental and analytical investigations. For more realistic description of dynamic responses of saturated sands, the DSC model was modified based on the dynamic effective stress path and excess pore pressure development. Both static and cyclic undrained triaxial tests were performed for sands with different relative densities and confining stresses. Based on test results, a classification of liquefaction phases in terms of the dynamic effective stress path and the excess pore pressure development was proposed and adopted into the modified DSC model. The proposed methods using the original and modified DSC models were compared with examples with different relative densities and confining stresses. Based on the comparisons between the predicted results using the original and modified DSC models and experimental data, the parameters required to define the model were simplified. It was also found that modified model more accurately simulate initial liquefaction and dynamic responses of soil under cyclic undrained triaxial tests.

Correlations of Earthquake Accelerations and LPIs for Liquefaction Risk Mapping in Seoul & Gyeonggi-do Area based on Artificial Scenarios (서울, 경기지역의 시나리오별 액상화 위험지도 작성을 위한 지진가속도와 LPI 상관관계 분석)

  • Baek, Woohyun;Choi, Jaesoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.5
    • /
    • pp.5-12
    • /
    • 2019
  • On November 15, 2017, a unpredictable liquefaction damage was occurred at the $M_L=5.4$ Pohang earthquake and after, many researches have been conducted in Korea. In Korea, where there were no cases of earthquake damage, it has been extremely neglectable in preparing earthquake risk maps and building earthquake systems that corresponded to prevention and preparation. Since it is almost impossible to observe signs and symptoms of drought, floods, and typhoons in advance, it is very effective to predict the impacts and magnitudes of seismic events. In this study, 14,040 borehole data were collected in the metropolitan area and liquefaction evaluation was performed using the amplification factor. Based on this data, liquefaction hazard maps were prepared for ground accelerations of 0.06 g, 0.14 g, 0.22 g, and 0.30 g, including 200years return period to 4,800years return period. Also, the correlation analysis between the earthquake acceleration and LPI was carried out to draw a real-time predictable liquefaction hazard map. As a result, 707 correlation equations in every cells in GIS map were proposed. Finally, the simulation for liquefaction risk mapping against artificial earthquake was performed in the metropolitan area using the proposed correlation equations.

A Study on Evaluating Damage to Railway Embankment Caused by Liquefaction Using Dynamic Numerical Analysis (동적수치해석을 이용한 액상화로 인한 철도제방 피해도 평가법 개발 연구)

  • Ha, Ik-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.149-161
    • /
    • 2022
  • This study selected the indexes for evaluating the damage of the railway embankments due to liquefaction from the earthquake damage cases of railway embankments. The study correlated the selected indexes and the settlement of the embankment crest from the dynamic numerical analysis. Further, the correlation was used to develop a method for evaluating the liquefaction damage to the railway embankment. The damage cases and damage types were analyzed, and referring to the liquefaction damage assessment method for other structures, the embankment height (H), the non-liquefiable layer thickness (H1), and the liquefaction potential index were selected as indexes for evaluating the damage. The study performed dynamic effective stress analyses on the railway embankment, and the PM4-Sand model was applied as the constitutive liquefaction model for the embankment foundation ground. The model's validity was first verified by comparing it with the existing dynamic centrifugal model test results performed on the railway embankment. Nine sites where the foundation ground can be liquefied were selected from the data of 549 embankments of the Honam High-speed Railway in Korea. Further, dynamic numerical analyses using four seismic waves as input earthquake load were performed for the selected site sections. The numerical analysis results confirmed the correlation between the evaluation indexes and the embankment crest settlement. A method for efficiently evaluating the damage to the embankment due to liquefaction was proposed using the chart obtained from this correlation.