• 제목/요약/키워드: lipopolysaccharides

검색결과 170건 처리시간 0.026초

Intestinal Alkaline Phosphatase: Potential Roles in Promoting Gut Health in Weanling Piglets and Its Modulation by Feed Additives - A Review

  • Melo, A.D.B.;Silveira, H.;Luciano, F.B.;Andrade, C.;Costa, L.B.;Rostagno, M.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권1호
    • /
    • pp.16-22
    • /
    • 2016
  • The intestinal environment plays a critical role in maintaining swine health. Many factors such as diet, microbiota, and host intestinal immune response influence the intestinal environment. Intestinal alkaline phosphatase (IAP) is an important apical brush border enzyme that is influenced by these factors. IAP dephosphorylates bacterial lipopolysaccharides (LPS), unmethylated cytosine-guanosine dinucleotides, and flagellin, reducing bacterial toxicity and consequently regulating toll-like receptors (TLRs) activation and inflammation. It also desphosphorylates extracellular nucleotides such as uridine diphosphate and adenosine triphosphate, consequently reducing inflammation, modulating, and preserving the homeostasis of the intestinal microbiota. The apical localization of IAP on the epithelial surface reveals its role on LPS (from luminal bacteria) detoxification. As the expression of IAP is reported to be downregulated in piglets at weaning, LPS from commensal and pathogenic gram-negative bacteria could increase inflammatory processes by TLR-4 activation, increasing diarrhea events during this phase. Although some studies had reported potential IAP roles to promote gut health, investigations about exogenous IAP effects or feed additives modulating IAP expression and activity yet are necessary. However, we discussed in this paper that the critical assessment reported can suggest that exogenous IAP or feed additives that could increase its expression could show beneficial effects to reduce diarrhea events during the post weaning phase. Therefore, the main goals of this review are to discuss IAP's role in intestinal inflammatory processes and present feed additives used as growth promoters that may modulate IAP expression and activity to promote gut health in piglets.

황련이 화상조직에 미치는 항산화와 항염증 및 피부재생 효과 (The anti-inflammatory effects of Huang-Lyun (Coptidis Rhizoma, CR) on injured tissue after burn elicitation)

  • 김희경;홍승욱
    • 대한한의학회지
    • /
    • 제32권2호
    • /
    • pp.1-13
    • /
    • 2011
  • Background and Objective: Coptidis Rhizoma is a medicinal herb known for its antioxidant and anti-inflammatory effect. The purpose of this study was to examine the effects of CR on the experimental burn elicitation in vitro and in vivo. Material and Methods: In order to know the antioxidant effect on skin cell of mice after burn elicitation, superoxide dismutase (SOD) activity was measured. In vitro, the RAW 264.7 macrophage cells were treated with lipopolysaccharides for experimental inflammation. iNOS mRNA expression was observed after CR-treatment. In order to know effects on the skin regeneration in the burned mice, we counted the nitric oxide (NO) in blood. We also observed the histological structure in the epidermal basal layer and the dermal section, and we studied changes of angiogenesis in the capillaries surrounding the basal layer and dermal papilla. The changes of transcription of iNOS mRNA (inducible nitric oxide synthase mRNA) and changes of NF-${\kappa}$B (nuclear factor ${\kappa}$B) p65 positive reaction were also observed to investigate the changes of the stress in the skin. Results: The results indicated that CR has significant effects on the antioxidant effect on skin cells of mice after burn elicitation by increasing SOD activity in the in vitro test. It seemed that CR decreased the amount of NF-${\kappa}$B which induced the iNOS mRNA dose-dependently and suppress activating NO and angiogenesis. Furthermore, CR facilitated the process of skin recovery after experimental burn. Conclusion: CR can be applied for burned skin via antioxidant effect and skin regeneration.

Epigallocatechin-3-gallate rescues LPS-impaired adult hippocampal neurogenesis through suppressing the TLR4-NF-κB signaling pathway in mice

  • Seong, Kyung-Joo;Lee, Hyun-Gwan;Kook, Min Suk;Ko, Hyun-Mi;Jung, Ji-Yeon;Kim, Won-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권1호
    • /
    • pp.41-51
    • /
    • 2016
  • Adult hippocampal dentate granule neurons are generated from neural stem cells (NSCs) in the mammalian brain, and the fate specification of adult NSCs is precisely controlled by the local niches and environment, such as the subventricular zone (SVZ), dentate gyrus (DG), and Toll-like receptors (TLRs). Epigallocatechin-3-gallate (EGCG) is the main polyphenolic flavonoid in green tea that has neuroprotective activities, but there is no clear understanding of the role of EGCG in adult neurogenesis in the DG after neuroinflammation. Here, we investigate the effect and the mechanism of EGCG on adult neurogenesis impaired by lipopolysaccharides (LPS). LPS-induced neuroinflammation inhibited adult neurogenesis by suppressing the proliferation and differentiation of neural stem cells in the DG, which was indicated by the decreased number of Bromodeoxyuridine (BrdU)-, Doublecortin (DCX)- and Neuronal Nuclei (NeuN)-positive cells. In addition, microglia were recruited with activating TLR4-NF-${\kappa}B$ signaling in the adult hippocampus by LPS injection. Treating LPS-injured mice with EGCG restored the proliferation and differentiation of NSCs in the DG, which were decreased by LPS, and EGCG treatment also ameliorated the apoptosis of NSCs. Moreover, pro-inflammatory cytokine production induced by LPS was attenuated by EGCG treatment through modulating the TLR4-NF-${\kappa}B$ pathway. These results illustrate that EGCG has a beneficial effect on impaired adult neurogenesis caused by LPS-induced neuroinflammation, and it may be applicable as a therapeutic agent against neurodegenerative disorders caused by inflammation.

새로운 생물적 방제 전략: 미생물 인자 유래 식물면역 유도 (Augmenting Plant Immune Responses and Biological Control by Microbial Determinants)

  • 이상무;정준휘;류충민
    • 식물병연구
    • /
    • 제21권3호
    • /
    • pp.161-179
    • /
    • 2015
  • 식물은 다양한 병원성 미생물에 대하여 효과적인 방어 기제를 발전시켜 왔다. 최근 유전체와 다중 오믹스 기술의 발전은 우리에게 미생물 인자에 의한 식물 면역을 폭넓게 이해할 수 있는 단초를 제공해 주었다. 하지만 아직까지는 이러한 기술을 병 방제 전략에 이용한 적은 많지 않다. 그래서 본 리뷰에서 식물 면역의 기본 개념을 소개하고 최근 얻어진 결과들을 소개하였다. 덧붙여 이미 논문에서 발표된 진균, 세균, 바이러스 유래 결정인자에 의한 생물적 방제 가능한 방법에 대해 기술하였다. 특히 미생물 결정인자인 chitin, glucan, LPS/EPS, 미생물분자패턴, 항생제, 식물유사호르몬, AHLs, harpin, 비타민, 휘발성물질에 대한 결과를 자세하게 기술하였다. 이 리뷰를 통하여 많은 과학자들과 농민들이 미생물 결정인자 기반의 생물적 방제에 대한 지식이 폭넓어지고, 다양한 미생물 결정 인자가 앞으로 농업현장의 종합적인 병방제 전략의 하나로 자리매김하기를 바란다.

식용버섯의 면역조절에 미치는 영향 (Immunomodulating Effect of Edible Mushrooms in Mice)

  • 박현지;허용;김종봉
    • 생명과학회지
    • /
    • 제21권4호
    • /
    • pp.515-520
    • /
    • 2011
  • 본 연구는 식용버섯들의 면역조절기능제로서의 가치 여부를 평가하기 위하여 수행되었다. 본 연구를 위해 민자주방망이버섯, 먹물버섯, 표고버섯, 새송이버섯이 사용되었다. 버섯을 투여한 생쥐의 혈장 내 IgG1, IgG2a 수준을 측정하였고, 비장 단일 세포군을 이용하여 T 림프구 및 B 림프구 in vitro 활성화 결과 생성된 IFN-${\gamma}$와 IL-4, IgG1과 IgG2a 수준을 각각 분석하였다. 실험 결과 표고버섯 1 mg/체중 kg을 투여한 군에서 IFN${\gamma}$/IL-4의 비가 다른 군에 비해 유의하게 높았다. 또한 혈장 내 IgG2a/IgG1의 비가 표고버섯의 경우에 다른 군보다 높았다. 아울러 TNF${\alpha}$의 생성 역시 표고버섯 1 mg/체중 kg을 투여한 군에서 다른 군보다 높았다. 이는 표고버섯이 항암작용, 항바이러스 작용과 같은 type-1 반응을 촉진할 가능성이 있음을 예측케 해주는 결과라 생각된다.

Effect of quercetin on the production of nitric oxide in murine macrophages stimulated with lipopolysaccharide from Prevotella intermedia

  • Cho, Yun-Jung;Kim, Sung-Jo
    • Journal of Periodontal and Implant Science
    • /
    • 제43권4호
    • /
    • pp.191-197
    • /
    • 2013
  • Purpose: Nitric oxide (NO) is a short-lived bioactive molecule that is known to play an important role in the pathogenesis of periodontal disease. In the current study, we investigated the effect of the flavonoid quercetin on the production of NO in murine macrophages activated with lipopolysaccharide (LPS) from Prevotella intermedia, a pathogen related to inflammatory periodontal disease, and tried to elucidate the underlying mechanisms of action. Methods: LPS was isolated from P. intermedia ATCC 25611 cells by the standard hot phenol-water method. The concentration of NO in cell culture supernatants was determined by measuring the accumulation of nitrite. Inducible NO synthase (iNOS) and heme oxygenase-1 (HO-1) protein expression, phosphorylation of c-Jun N-terminal kinase (JNK) and p38, inhibitory ${\kappa}B$ $(I{\kappa}B)-{\alpha}$ degradation, and signal transducer and activator of transcription 1 (STAT1) phosphorylation were analyzed via immunoblotting. Results: Quercetin significantly attenuated iNOS-derived NO production in RAW246.7 cells activated by P. intermedia LPS. In addition, quercetin induced HO-1 protein expression in cells activated with P. intermedia LPS. Tin protoporphyrin IX (SnPP), a competitive inhibitor of HO-1, abolished the inhibitory effect of quercetin on LPS-induced NO production. Quercetin did not affect the phosphorylation of JNK and p38 induced by P. intermedia LPS. The degradation of $I{\kappa}B-{\alpha}$ induced by P. intermedia LPS was inhibited when the cells were treated with quercetin. Quercetin also inhibited LPS-induced STAT1 signaling. Conclusions: Quercetin significantly inhibits iNOS-derived NO production in murine macrophages activated by P. intermedia LPS via anti-inflammatory HO-1 induction and inhibition of the nuclear factor-${\kappa}B$ and STAT1 signaling pathways. Our study suggests that quercetin may contribute to the modulation of host-destructive responses mediated by NO and appears to have potential as a novel therapeutic agent for treating inflammatory periodontal disease.

Attenuation of Anemia by Relmα in LPS-Induced Inflammatory Response

  • Lee, Mi-Ran
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권10호
    • /
    • pp.135-141
    • /
    • 2018
  • In this paper, we propose to evaluate the effect of resistin-like molecule alpha ($Relm{\alpha}$) on the progression of anemia of inflammation. Anemia of inflammation is a common feature of inflammatory disorders, including chronic kidney disease, infections, and rheumatoid arthritis. $Relm{\alpha}$ is highly up-regulated in various inflammatory states, especially those involving asthma, intestinal inflammation, and parasitic diseases, and regulates the pathogenesis of those diseases. However, the role of $Relm{\alpha}$ in anemia of inflammation is unknown. To explore the roles of $Relm{\alpha}$ in anemia of inflammation in vivo, we generated mouse model of the disease by injecting 0.25 mg/kg lipopolysaccharides (LPS) intraperitoneally into $Relm{\alpha}-deficient$ and wild-type (WT) mice daily for 10 days. Research data was expressed as differences between LPS-treated $Relm{\alpha}-deficient$ and WT mice by a two-tailed non-parametric Mann-Whitney U-test using GraphPad Instat program. The results of the study are as follows: LPS-treated $Relm{\alpha}-deficient$ mice had significantly (p<0.05) lower hemoglobin contents, hematocrit levels and red blood cell indices including mean corpuscular volume, mean corpuscular hemoglobin than WT controls. This decrease was accompanied by significant (p<0.05) increase in total white blood cell and monocyte counts in the blood. However, there was no significant difference in mRNA levels of hepatic hepcidin and renal erythropoietin between the two animal groups. Taken together, these results indicates that $Relm{\alpha}$ deficiency exacerbates the anemia by increasing inflammation, suggesting therapeutic value of $Relm{\alpha}$ in the treatment of anemia of inflammation.

S. abortus 유래 LPS와 E. coli 유래 LPS에 의한 패혈증성 쇽 유도 작용 비교 (Differential Induction of Septic Shock by Lipopolysacchrides from E. coli and S. abortus)

  • 조재열;유은숙
    • 약학회지
    • /
    • 제51권1호
    • /
    • pp.44-50
    • /
    • 2007
  • Acute septic shock is one of inflammatory diseases mediated by pro-inflammatory cytokines such as tumor necrosis factor (TNF)-${\alpha}$. In this study, we examined the pathological difference and mechanism of lipopolysaccharides isolated from E. coli (E-LPS) or S. abortus (S-LPS) on inducing acute septic shock in ICR mouse. All mice were died by intraperitoneal treatment of S-LPS with 0.75 mg/kg, whereas E-LPS treated with even 3 mg/kg only showed 30% of mice lethal, indicating that S-LPS may be more feasible in triggering a strong septic shock condition. The secretion pattern of TNF-${\alpha}$, a critical pro-inflammatory cytokine in septic shock condition, was also distinct between E-LPS- and S-LPS-treated groups. Thus, S-LPS strikingly increased serum level of TNF-${\alpha}$ (6 ng/ml) at 1 h, while E-LPS just displayed at 2 ng/ml level. However the interaction of S-LPS with LPS receptor toll like receptor (TLR)-4, was not stronger than that of E-LPS, according to experiments with macrophage cell line RAW264.7 cells. Thus, E-LPS rather than S-LPS strongly enhanced the production of TNF-${\alpha}$. Interestingly, S-LPS more strongly up-regulated splenocyte proliferation, compared to E-LPS group, whereas there was no difference between S- or E-LPS treated groups in proliferation of Balb/c- or C57BL/6-originated splenic lymphocytes. Therefore, our data suggest that S-LPS is a more active endotoxin and that the strong septic shock-inducing effect of S-LPS seems due to the enhancement of early TNF-${\alpha}$ production and S-LPS-sensitive lymphocyte proliferation.

칠피(漆皮) 부탄올 분획물이 LPS로 유도된 RAW 264.7 대식세포에 미치는 영향 (Effects of Butanol extract from Rhois Vernicifluae Cortex (RVC) in lipopolysaccharides-induced macrophage RAW 264.7 cells)

  • 송생엽;심성용;김경준
    • 한방안이비인후피부과학회지
    • /
    • 제20권1호통권32호
    • /
    • pp.1-15
    • /
    • 2007
  • Objectives : RVC has long been used for a useful natural agent ameliorating inflammation related symptoms in the folk medicine recipe. This study was performed to investigate effects of RVC on the inflammation and oxidation in RAW 264.7 cells. Methods : The RVC was extracted with 80% ethanol and sequentially partitioned with solvents in order to increase polarity. With the various fractions, we determined the activities on the inflammation and oxidation in RAW 264.7 cells. Results : 1. Among the various solvent extracts of RVC, the butanol fraction showed the most powerful inhibitory ability against nitric oxide (NO) production in lipopolysaccharide (LPS)-induced RAW 264.7 cells without affecting cell viability. 2. Butanol fraction showed a oxidation inhibition effect by decreasing the DPPH and OH radicals. 3. Butanol fraction exhibited the inhibitory avilities against iNOS and COX-2. 4. Reverse transcriptase polymerase chain reaction (RT-PCR) and Westem blotting analysis revealed that the BuOH fraction provided a primary inhibitor of the iNOS protein and mRNA expression in LPS-induced RAW 264.7 cells. Among the up-regulater molecules of iNOS and COX-2, the BuOh fraction of RVC was shown the inhibitory activity of phoshporylation of c-Jun N-terminal kinase (JNK) 1/2 and threonine protein kinase (AKT), the one of the MAPKs pathway. Conclusion : Thus, the present study suggests that the response of a component of the BuOH fraction to NO generation via iNOS expression provide a important clue to elucidate anti-inflammatory and anti-oxidation mechanism of RVC.

  • PDF

Inhibitory Effect of a Phosphatidyl Ethanolamine Derivative on LPS-Induced Sepsis

  • Lee, Chunghyun;An, Hyun-Jung;Kim, Jung-In;Lee, Hayyoung;Paik, Sang-Gi
    • Molecules and Cells
    • /
    • 제27권2호
    • /
    • pp.251-255
    • /
    • 2009
  • Sepsis is the leading cause of death in critically ill patients. Today, around 60% of all cases of sepsis are caused by Gram-negative bacteria. The cell wall component lipopolysaccharide (LPS) is the main initiator of the cascade of cellular reactions in Gram-negative infections. The core receptors for LPS are toll-like receptor 4 (TLR4), MD-2 and CD14. Attempts have been made to antagonize the toxic effect of endotoxin using monoclonal antibodies against CD14 and synthetic lipopolysaccharides but there is as yet no effective treatment for septic syndrome. Here, we describe an inhibitory effect of a phosphatidylethanolamine derivative, PE-DTPA (phosphatidylethanolamine diethylenetriaminepentaacetate) on LPS recognition. PE-DTPA bound strongly to CD14 ($K_d$, $9.52{\times}10^{-8}M$). It dose dependently inhibited LPS-mediated activation of human myeloid cells, mouse macrophage cells and human whole blood as measured by the production of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and nitric oxide, whereas other phospho-lipids including phosphatidylserine and phosphatidylethanolamine had little effect. PE-DTPA also inhibited transcription dependent on $NF-{\kappa}B$ activation when it was added together with LPS, and it rescued LPS-primed mice from septic death. These results suggest that PE-DTPA is a potent antagonist of LPS, and that it acts by competing for binding to CD14.