• Title/Summary/Keyword: lipoamide dehydrogenase

Search Result 3, Processing Time 0.02 seconds

Sequence Analysis and Functional Expression of the Structural and ]Regulatory Genes for Pyruvate Dehydrogenase

  • Hwan Youn;Jangyul Kwak
    • Journal of Microbiology
    • /
    • v.40 no.1
    • /
    • pp.43-50
    • /
    • 2002
  • A cluster of genes encoding the pyruvate dehydrogenase complex (PDC) of Streptomyces seoulensis, a Gram-positive bacterium, was cloned and sequenced. The genes of S. seoulensis consist of four open reading frames. The first gene, lpd, which encodes a lipoamide dehydrogenase, is followed by pdhB encoding a dihydrolipoamide acetyltransferase (E2p), pdhR, a regulatory gene, and pdhA encoding a pyruvate dehydrogenase component (Elp). Elp had an unusual homodimeric subunit, which has been known only in Gram-negative bacteria S. seoulensis E2p contains two lipoyl domains like those of humans and Streptomyces faecalis. The pdhR gene appears to be clustered with the structural genes of S. seoulensis PDC. The PdhR-overexpressed S. seoulensis howed growth retardation and the decrease of Elp, indicating that PdhR regulates the function of PDC by repressing the expression of Elp. A strain of Streptomyces licidans overexpressing S. seoulensis PdhR showed a significant decreasein the level of actinorhodin, implying a regulatory role for Streptomyces PDC in antibiotic biosynthesis.

Bitter Melon (Momordica charantia) Extract Enhances Exercise Capacity in Mouse Model (여주(Momordica charantia) 추출물이 생쥐의 지구력 운동수행능력 향상 효과에 미치는 영향)

  • Kim, Inbo;Park, Choon-Ho;Jung, Hoe-Yune;Jeong, Juseong;Hong, Hwan-Ung;Kim, Jong Bae
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.4
    • /
    • pp.506-512
    • /
    • 2016
  • Bitter melon (Momordica charantia) is used in traditional herbal medicine in many Asian countries for the treatment of several diseases such as diabetes, eczema, night blindness, psoriasis, and rheumatism. Especially, most reports concerning the biological activities of bitter melon have focused on its effects on diabetes and hyperglycemia. Also, bitter melon is regarded as a longevity food, suggesting that it has several beneficial effects on anti-aging and the maintenance of a healthy state. Thus, we investigated whether bitter melon could increase the capacity of exercise in this study. Interestingly, bitter melon fruit extract activated AMP-activated protein kinase (AMPK), which is important for regulating glucose homeostasis, mitochondrial content and exercise capacity. In addition, bitter melon extract increased the expression of enzymes involved in fatty acid oxidation such as mitochondrial uncoupling protein 3 (UCP3), carnitine palmitoyl transferase 1b (CPT1b), and pyruvate dehydrogenase lipoamide kinase isozyme 4 (PDK4). Moreover, exercise tolerance was much more enhanced in bitter melon treated animals compared to the non-treated control group. These results suggest that bitter melon is a promising candidate for the development of functional foods beneficial for physical strength and the enhancement of exercise capacity.

Effects of taurine and ginseng extracts on energy metabolism during exercise and their anti-fatigue properties in mice

  • Kim, Jisu;Beak, Suji;Ahn, Sanghyun;Moon, Byung Seok;Kim, Bom Sahn;Lee, Sang Ju;Oh, Seung Jun;Park, Hun-Young;Kwon, Seung Hae;Shin, Chul Ho;Lim, Kiwon;Lee, Kang Pa
    • Nutrition Research and Practice
    • /
    • v.16 no.1
    • /
    • pp.33-45
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Ginseng extract (GSE) and taurine (TR) are widely used antifatigue resources in functional foods. However, the mechanism underlying the antifatigue effects of GSE and TR are still unclear. Hence, we investigated whether GSE and TR have synergistic effects against fatigue in mice. MATERIALS/METHODS: L6 cells were treated with different concentrations of TR and GSE, and cell viability was determined using 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium. Oxidative stress was analyzed by immunocytochemistry using MitoTrackerTM Red FM and an anti-8-oxoguanine antibody. Respiratory gas analysis was performed to investigate metabolism. Expression of an activated protein kinase was analyzed using immunohistochemistry. Gene expression of cluster of differentiation 36 and pyruvate dehydrogenase lipoamide kinase isozyme 4 was measured using reverse transcription-polymerase chain reaction. Mice were orally administered TR, GSE, or their combination for 30 days, and then fatigue-related parameters, including lactate, blood urea nitrogen, and glycogen, were measured after forced swimming. RESULTS: TR and GSE reduced oxidative stress levels in hydrogen peroxide-stimulated L6 cells and enhanced the oxygen uptake and lipid metabolism in mice after acute exercise. After oral administration of TR or GSE for 30 days, the fatigue-related parameters did not change in mice. However, the mice administered GSE (400 mg/kg/day) alone for 30 days could swim longer than those from the other groups. Further, no synergistic effect was observed after the swimming exercise in mice treated with the TR and GSE combination for 30 days. CONCLUSIONS: Taken together, our data suggest that TR and GSE may exert antifatigue effects in mice after acute exercise by enhancing oxygen uptake and lipid oxidation.