• 제목/요약/키워드: lipid productivity

검색결과 79건 처리시간 0.03초

Effects of Humic Acid and Blueberry Leaf Powder Supplementation in Feeds on the Productivity, Blood and Meat Quality of Finishing Pigs

  • Kim, Kwonjung;Bae, Inkyu;Cho, Jinho;Choi, Yangil;Ha, Jungheun;Choi, Jungseok
    • 한국축산식품학회지
    • /
    • 제39권2호
    • /
    • pp.276-285
    • /
    • 2019
  • The objective of this study was to determine effects of humic acid (HA) and blueberry leaf powder (BLP) supplementation in pig feed on productivity, blood profiles, and meat quality characteristics of longissimus muscle. The experimental design included six treatments: 1) CON, no addition; 2) T1, BLP 0.1%; 3) T2, BLP 0.2%; 4) T3, humic acid 2%; 5) T4: humic acid 2%+BLP 0.1%; and 6) T5: humic acid 2%+BLP 0.2%. HA and BLP supplementation in pig feed significantly increased average daily feed intake (ADFI) values (p<0.05). HA supplementation in pig feed had beneficial effects in lipid profiles without altering feed efficiency rate (FER). HA and BLP co-supplementation in pig feed decreased pH in longissimus thoracis (p<0.05). In addition, sensory characteristics were enhanced when pig feed was supplemented with HA and BLP without causing adverse effects in meat quality. Taken together, addition of HA and BLP in pig feed may produce functional meat products.

한국산 고지질 미세조류 Botryococcus의 분포 및 생장 특성 (Physiological and Ecological Characteristics of Lipid-Producing Botryococcus Isolated from the Korean Freshwaters)

  • 신상윤;조범호;이형관;오희목
    • 환경생물
    • /
    • 제31권4호
    • /
    • pp.288-294
    • /
    • 2013
  • 한국산 고지질 Botryococcus를 확보하기 위해 시료채취를 하였고, 실험실에서 Botryococcus sp.를 분리하였다. 분리된 Botryococcus sp.는 현미경으로 그 크기와 형태를 관찰하였고, 분자적 동정을 위해 18S rRNA gene과 ITS region의 염기서열을 분석함으로써 Botryococcus sudeticus J2로 명명하였으며, 생태학적 특성 연구를 위해 문헌조사를 통해 국내의 Botryococcus 속의 분포를 조사를 실시하였다. 동정된 B. sudeticus J2의 생리적 특성 분석을 위해 배양실험을 수행하였고, 생장률과 바이오매스 생산성 그리고 광합성효율을 측정하였다. 또한 바이오디젤 생산을 위한 조류주로서의 가치를 판단하기 위해 총 지질함유량과 지방산 조성을 분석하였다. B. sudeticus J2의 생태적, 생리적 연구 후 2배의 광량과 2% $CO_2$ 조건에서 배양을 수행함으로써 최적 배양조건을 탐색하고자 하였다. 분리된 B. sudeticus J2는 비교를 위한 B. braunii UTEX 572보다 높은 바이오매스 생산성과 지질생산성을 보였으나 바이오매스 생산을 위한 다른 후보 미세조류에 비해서는 낮은 생장률을 보였다. 따라서 바이오디젤 생산을 위한 조류로 B. sudeticus J2를 활용하기 위해서는 본 연구에서 밝혀진 광저해에 대한 내성에 초점을 맞추어 최적 배양을 위한 광조건을 탐색하는 연구가 필요하다.

Lipase Production by Limtongozyma siamensis, a Novel Lipase Producer and Lipid Accumulating Yeast

  • Varunya Sakpuntoon;Savitree Limtong;Nantana Srisuk
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권11호
    • /
    • pp.1531-1541
    • /
    • 2023
  • Lipase is a well-known and highly in-demand enzyme. During the last decade, several lipase optimization studies have been reported. However, production costs have always been a bottleneck for commercial-scale microbial enzyme production. This research aimed to optimize the conditions for lipase production by Limtongozyma siamensis DMKU-WBL1-3 via a One-Factor-At-a-Time (OFAT) approach combined with statistical methods while using a low-cost substrate. Results suggest that low-cost substrates can be substituted for all media components. An optimal medium was found, using response surface methodology (RSM) and central composite design (CCD), to consist of 0.50% (w/v) sweet whey, 0.40% (w/v) yeast extract (food grade), and 2.50% (v/v) palm oil with the medium pH adjusted to 4 under shaking flask cultivation. From an economic point of view, this work was successful in reducing production costs while increasing lipase productivity. The medium costs were reduced by 87.5% of the original cost while lipase activity was increased by nearly 6-fold. Moreover, lipase production was further studied in a 2-L stirred-tank fermentor. Its activity was 1,055.6 ± 0.0 U/ml when aeration and agitation rates were adjusted to 1 vvm and 170 rpm, respectively. Interestingly, under this optimal lipase production, the yeast showed accumulated lipids inside the cells. The primary fatty acid is a monounsaturated fatty acid (MUFA) that is typically linked to health benefits. This study hence reveals promising lipase production and lipid accumulation by L. siamensis DMKU-WBL1-3 that are worthy of further study.

The enhancing effect of Acanthopanax sessiliflorus fruit extract on the antibacterial activity of porcine alveolar 3D4/31 macrophages via nuclear factor kappa B1 and lipid metabolism regulation

  • Hwang, Eunmi;Kim, Gye Won;Song, Ki Duk;Lee, Hak-Kyo;Kim, Sung-Jo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권11호
    • /
    • pp.1776-1788
    • /
    • 2019
  • Objective: The demands for measures to improve disease resistance and productivity of livestock are increasing, as most countries prohibit the addition of antibiotics to feed. This study therefore aimed to uncover functional feed additives to help enhance livestock immunity and disease resistance, using Acanthopanax sessiliflorus fruit extract (ASF). Methods: ASF was extracted with 70% EtOH, and total polyphenolic and catechin contents were measured by the Folin-Ciocalteu and vanillin assay, respectively. The 3D4/31 porcine macrophage cells ($M{\Phi}$) were activated by phorbol 12-myristate 13-acetate (PMA), and cell survival and growth rate were measured with or without ASF treatment. Flow-cytometric analysis determined the lysosomal activity, reactive oxygen species levels (ROS), and cell cycle distribution. Nuclear factor kappa B ($NF-{\kappa}B$) and superoxide dismutase (SOD) protein expression levels were quantified by western blotting and densitometry analysis. Quantitative polymerase chain reaction was applied to measure the lipid metabolism-related genes expression level. Lastly, the antibacterial activity of 3D4/31 $M{\Phi}$ cells was evaluated by the colony forming unit assay. Results: ASF upregulated the cell viability and growth rate of 3D4/31 $M{\Phi}$, with or without PMA activation. Moreover, lysosomal activity and intracellular ROS levels were increased after ASF exposure. In addition, the antioxidant enzyme SOD2 expression levels were proportionately increased with ROS levels. Both ASF and PMA treatment resulted in upregulation of $NF-{\kappa}B$ protein, tumor necrosis factor $(TNF){\alpha}$ mRNA expression levels, lipid synthesis, and fatty acid oxidation metabolism. Interestingly, co-treatment of ASF with PMA resulted in recovery of $NF-{\kappa}B$, $TNF{\alpha}$, and lipid metabolism levels. Finally, ASF pretreatment enhanced the in vitro bactericidal activity of 3D4/31 $M{\Phi}$ against Escherichia coli. Conclusion: This study provides a novel insight into the regulation of $NF-{\kappa}B$ activity and lipid metabolism in $M{\Phi}$, and we anticipate that ASF has the potential to be effective as a feed additive to enhance livestock immunity.

Production of Lysophospholipid Using Extracellular Phospholipase $A_1$ from Serratia sp. MK1

  • Kim, Jeong-Kyun;Kim, Myung-Kee;Chung, Guk-Hoon;Choi, Choon-Soon;Rhee, Joon-Shick
    • Journal of Microbiology and Biotechnology
    • /
    • 제7권4호
    • /
    • pp.258-261
    • /
    • 1997
  • For the efficient production of lysophospholipid the hydrolysis of phospholipid using phospholipase $A_1$ from Serratia sp. MK1 was studied in an aqueous-solvent, a two-phase and an emulsion system. Judged on the basis of productivity and the degree of hydrolysis, the yield of lysophospholipid in a two-phase system was found to be better than that obtained in an emulsion system. Among the 13 organic solvents tested phospholipase $A_1$ showed the most efficient catalytic activity and stability in butyl acetate. When 20% phospholipid was used it was completely hydrolyzed in this two-phase system.

  • PDF

Dairy wastewater treatment using microalgae for potential biodiesel application

  • Choi, Hee-Jeong
    • Environmental Engineering Research
    • /
    • 제21권4호
    • /
    • pp.393-400
    • /
    • 2016
  • The aim of this study was to evaluate the biomass production and dairy wastewater treatment using Chlorella vulgaris. The results indicated that the maximum percentages of biochemical oxygen demand, chemical oxygen demand, suspended solids, total nitrogen, and total phosphorus removed were 85.61%, 80.62%, 29.10%, 85.47%, and 65.96%, respectively, in dairy effluent at 10 d. A maximum of 1.23 g/L dry biomass was obtained in 7 d. The biomass productivity was strongly influenced by the nutrient reduction in the dairy effluent. The biodiesel produced by the C. vulgaris in the dairy effluent was in good agreement with the American Society of Testing and Materials-D6751 and European Standards 14214 standards. Therefore, using dairy effluent for microalgal cultures could be a useful and practical strategy for an advanced, environmentally friendly treatment process.

Gene-editing techniques and their applications in livestock and beyond

  • Tae Sub Park
    • Animal Bioscience
    • /
    • 제36권2_spc호
    • /
    • pp.333-338
    • /
    • 2023
  • Genetic modification enables modification of target genes or genome structure in livestock and experimental animals. These technologies have not only advanced bioscience but also improved agricultural productivity. To introduce a foreign transgene, the piggyBac transposon element/transposase system could be used for production of transgenic animals and specific target protein-expressing animal cells. In addition, the clustered regularly interspaced short palindromic repeat-CRISPR associated protein 9 (CRISPR-Cas9) system have been utilized to generate chickens with knockout of G0/G1 switch gene 2 (G0S2) and myostatin, which are related to lipid deposition and muscle growth, respectively. These experimental chickens could be the invaluable genetic resources to investigate the regulatory pathways and mechanisms of improvement of economic traits such as fat quantity and growth. The gene-edited animals could also be applicable to the livestock industry.

배지 성분이 Streptomyces toxytricini에서의 lipstatin 발효에 미치는 영향 (Effect of Medium Components on the Lipstatin Production by Streptomyces toxytricini)

  • 임미옥;인웬쑤이;이지선;유연수;김상달;남두현
    • 미생물학회지
    • /
    • 제42권3호
    • /
    • pp.172-176
    • /
    • 2006
  • Streptomyces toxytricini로부터 lipstatin생산을 최적화하기 위해, 배지 성분이 lipstatin생산에 미치는 영향을 조사하였다. 이를 위해 tryptic soy broth (TSB) 배지를 기본 배지로 하여 $28^{\circ}C$, 200 rpm 으로 3일간 배양하여 총 배양액(seed culture) 을 만들고, 여기에 다양한 탄소원, 질소원, 지질 및 지방산등을 함유한 TSB 배지에 2% 접종한 후 60시간 동안 주 발효를 실시한 후, 배지 중의 lipstatin양을 측정하였다. 탄소원 중에서 glucose와 glycerol을 첨가한 배지에서 균체가 가장 잘 성장하였지만, lipstatin생산에는 lactose나 sucrose가 가장 우수한 것으로 나타났다. 한편, 질소원으로는 yeast extract가 균체 성장에 가장 좋았지만, 1.7% casitone과 0.3% soytone으로 구성된 TSB 배지에서 lipstatin생산량이 가장 높게 나타났다. 또한 lipstatin생산을 증가시키기 위해 triolein을 발효 배지에 첨가한 결과, 균체 성장은 증가하였지만, lipstatin의 생산은 현저히 감소하는 경향을 보였다. 한편, lipstatin의 생합성 원료로 추정되는 지방산들을 발효 배지에 0.5% 첨가하여 발효를 실시한 결과, 불포화 지방산인 linoleic acid나 oleic acid를 첨가한 경우 S. toxytricini의 성장이 억제되었으나, 포화 지방산인 stearic acid를 첨가한 경우에는 균체성장 뿐만 아니라 lipstatin 생산량도 증가하였다.

A Bioactive Fraction from Streptomyces sp. Enhances Maize Tolerance against Drought Stress

  • Warrad, Mona;Hassan, Yasser M.;Mohamed, Mahmoud S.M.;Hagagy, Nashwa;Al-Maghrabi, Omar A.;Selim, Samy;Saleh, Ahmed M.;AbdElgawad, Hamada
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권8호
    • /
    • pp.1156-1168
    • /
    • 2020
  • Drought stress is threatening the growth and productivity of many economical crops. Therefore, it is necessary to establish innovative and efficient approaches for improving crop growth and productivity. Here we investigated the potentials of the cell-free extract of Actinobacteria (Ac) isolated from a semi-arid habitat (Al-Jouf region, Saudi Arabia) to recover the reduction in maize growth and improve the physiological stress tolerance induced by drought. Three Ac isolates were screened for production of secondary metabolites, antioxidant and antimicrobial activities. The isolate Ac3 revealed the highest levels of flavonoids, antioxidant and antimicrobial activities in addition to having abilities to produce siderophores and phytohormones. Based on seed germination experiment, the selected bioactive fraction of Ac3 cell-free extract (F2.7, containing mainly isoquercetin), increased the growth and photosynthesis rate under drought stress. Moreover, F2.7 application significantly alleviated drought stress-induced increases in H2O2, lipid peroxidation (MDA) and protein oxidation (protein carbonyls). It also increased total antioxidant power and molecular antioxidant levels (total ascorbate, glutathione and tocopherols). F2.7 improved the primary metabolism of stressed maize plants; for example, it increased in several individuals of soluble carbohydrates, organic acids, amino acids, and fatty acids. Interestingly, to reduce stress impact, F2.7 accumulated some compatible solutes including total soluble sugars, sucrose and proline. Hence, this comprehensive assessment recommends the potentials of actinobacterial cell-free extract as an alternative ecofriendly approach to improve crop growth and quality under water deficit conditions.

Optimized cultivation of Ettlia sp. YC001 in eutrophic pond water for nutrient removal and biomass production

  • Oh, Hyung-Seok;Ahn, Chi-Yong;Srivastava, Ankita;Oh, Hee-Mock
    • ALGAE
    • /
    • 제33권4호
    • /
    • pp.319-327
    • /
    • 2018
  • Ettlia sp. YC001, a highly settleable and productive microalga, was shown to be effective in removing nutrients and capturing suspended solids from eutrophic pond water. The optimum conditions for the Ettlia sp. YC001 cultivation were investigated using water from a landscape pond. The pond water was supplemented with different N : P ratios by weight, and the biomass production and nutrient removal compared in batch cultures. The maximum removal rate of N and P was with an N : P ratio of 16 : 1. Plus, the turbidity dropped to near zero within 4 days. Meanwhile, chemostat cultivation showed that the biomass productivity and nutrient removal rate increased when increasing the dilution rate, where a dilution rate of $0.9d^{-1}$ showed the highest N and P removal rate at $32.4mg\;L^{-1}\;d^{-1}$ and $1.83mg\;L^{-1}\;d^{-1}$, respectively, and highest biomass and lipid productivity at $0.432g\;L^{-1}\;d^{-1}$ and $67.8mg\;L^{-1}\;d^{-1}$, respectively. The turbidity was also reduced by 98% in the chemostat cultivation. Moreover, auto-flocculation and pH were closely connected to the turbidity removal. As a result, this study identified the optimal N : P ratio for small pond water treatment using an Ettlia sp. YC001, while also establishing the optimal conditions for nutrient removal, turbidity reduction, and biomass production.