• Title/Summary/Keyword: lipid membranes

Search Result 170, Processing Time 0.031 seconds

Effects of Citrus Flavonoids on the Lipid Peroxidation Contents (감귤류 플라보노이드가 지질 과산화물 함량에 미치는 영향)

  • Cha, Jae-Young;Kim, Hyun-Jeong;Kim, Sung-Kyu;Lee, Yong-Jae;Cho, Young-Su
    • Food Science and Preservation
    • /
    • v.7 no.2
    • /
    • pp.211-217
    • /
    • 2000
  • The effects of Citrus flavonoids, hesperetin, hesderidin, naringenin, and naringin, on nonenzymatic lipid peroxidation were studied in three different in vitro experimental models. Hesperetin showed the most antioxidant effect in this experimental condition by measuring the malondialdehyde production using the thiobarbiturate and thiocyanate methods, the lipid peroxidation of microsomal membranes, and DPPH (${\alpha},{\alpha}'-diphenyl-{\beta}-picrylhydrazyl$) method. The antioxidative activity of the flavonoid aglycone forms, hesperetin, Citrus aglycone flavonoid, suggest the most antioxidant effect in this experimental condition, and this effect indicate more potent in the aglycones than their corresponding glycosides.

  • PDF

Thermodynamics of Partitioning of Substance P in Isotropic Acidic Bicelles

  • Baek, Seung Bin;Lee, Hyeong Ju;Lee, Hee Cheon;Kim, Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.743-748
    • /
    • 2013
  • The temperature dependence of the partition coefficients of a neuropeptide, substance P (SP), in isotropic acidic bicelles was investigated by using a pulsed field gradient nuclear magnetic resonance diffusion technique. The addition of negatively charged dimyristoylphosphatidylserine to the neutral bicelle changed the SP partitioning a little, which implies that the hydrophobic interaction between the hydrophobic residues of SP and the acyl chains of lipid molecules is the major interaction while the electrostatic interaction is minor in SP binding in a lipid membrane. From the temperature dependence of the partition coefficients, thermodynamic functions were calculated. The partitioning of SP into the acidic bicelles is enthalpy-driven, as it is for small unilamellar vesicles and dodecylphosphocholine micelles, while peptide partitioning into a large unilamellar vesicle is entropy-driven. This may mean that the size of lipid membranes is a more important factor for peptide binding than the surface curvature and surface charge density.

Effects of Wolgukwhan Methanol Extract on Oxidative Liver Injury (월국환(越鞠丸) 메탄올 추출물이 산화적 간손상에 미치는 효과)

  • Moon Jin-Young
    • Herbal Formula Science
    • /
    • v.10 no.2
    • /
    • pp.85-95
    • /
    • 2002
  • Objectives: In traditional medicine, Wolgukwhan has been used for the treatment of digestive system disease, such as indigestion, brash, ructation, nausea and vomiting. This study was purposed to investigate the effects of Wolgukwhan methnol extract (WGWM) on oxidative liver cell injury. Methods: In vivo assay, we administerated acetaminophen(500mg/kg, i.p.) to starved mice 24hrs after pretreatment of WGWM for 6days. In the liver homogenates, lipid peroxide and glutathione(GSH) levels were measured. In addition, activities of hepatic enzyme, such as catalase, glutathione peroxidase(GPX), glutathione S-transferase(GST) were measured in the hepatic mitochondrial and cytosolic fractions. Results: In vivo administeration of WGWM showed effective inhibition of acetaminophen induced lipid peroxidation and elevations of glutathione level. The acetaminophen treatment resulted in a decrease of catalase, GPX and GST activities. By contrast, WGWM pretreatment increased compare to those of untreated groups. Conclusions: These results suggested that WGWM might protect against lipid peroxidation by free radicals, destruction of hepatic cell membranes.

  • PDF

Scavenging Effects of Free Radicals and Inhibitory Effects of Lipid Peroxidation of Bupleury Radix Aqua-Acupuncture Solution in Vitro (시호 약침제제의 자유기 소거능 및 지질과산화 억제효능에 관한 연구)

  • Moon Jin-Young;Lim Jong-Kook
    • Journal of Acupuncture Research
    • /
    • v.15 no.2
    • /
    • pp.135-145
    • /
    • 1998
  • Bupleury radix has been used for the treatment of fever, liver disease, inflammation in traditional medicine. The present study was carried out to evaluate the antioxidant effects of Bupleury radix aqua-acupuncture solution (BRAS) in vitro. Oxygen derived free radicals produced in the course of normal aerobic life, such as superoxide anion radical($O_2^-$ ), hydroxyl radicaI( OH), hydrogen peroxide($H_2O_2$) and singlet oxygen($^1O_2$) can attack polyunsaturated fatty acid in cell membranes, enzymes, other cell compounds, and give rise to lipid peroxidation, DNA damage, lipofuscin accumulation, structure alteration of cell membrane and cell death. In this study, antioxidant effects of BRAS on lipid peroxidation were determined according to the method of TBA. BRAS inhibited markedly peroxidation of linoleic acid during the autoxidation, and also inhibited lipid peroxidation induced by hydroxyl radical derived from $H_2O_2-Fe^{2+}$ in rat liver homogenate. And BRAS showed 30% scavenging effect on DPPH radical, also exhibited a 30% inhibitory effect on superoxide generation from xanthine-xanthine oxidase system. In addition, BRAS protected the cell death induced by tert-butyl hydroperoxide(t-BHP) and significantly increased cell viability in the normal rat liver cell(Ac2F).

  • PDF

Effect of Dietary Fat on Structure and Function of Mammalian Cell Membrane (식이지방이 생체막 구조와 기능에 미치는 영향)

  • Cho, Sung-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.13 no.4
    • /
    • pp.459-468
    • /
    • 1984
  • The currently accepted model of membrane structure proposes a dynamic, asymmetric lipid matrix of phospholipids and cholesterol with globular proteins embedded across the membrane to various degrees. Most phospholipids are in the bilayer arrangement and also closely associated with integral membrane proteins or loosely associated with peripheral proteins. Biological functions of membrane, such as membrane-bound enzyme functions and transport systems, are influenced by the membrane physical properties, which are determined by fatty acid composition of phospholipids, polar head group composition and membrane cholesterol content. Polar and non-polar region of the phospholipid molecule can interact, with changes in the conformation of a membrane-associated protein altering either its catalytic activity or the protein's interaction with other membrane proteins. Mammalian dietary studies attempted to change the lipid composition of a few cell membranes have shown comparisons, using essential fatty acid-deficient diets. In recent years, Clandinin and a few other workers have pioneered the study proving the influence of dietary fat fed in a nutritionally complete diet on composition of phospholipid classes of cell membrane. Modulation caused by diet fat was rapid and reversible in phospholipid fatty acyl composition of membranes of cardiac mitochondria, liver cell, brain synaptosome and lymphocytes. These changes were at the same time, accompanied by variety of membrane associated functions controlled by membrane-bound enzymes, tranporter and receptor proteins. The findings suggest the basic concept of the necessity of dietary fatty acid balance if consistency of optimal membrane structural lipid composition is to be maintained, as well as the overall inadequacy of describing the nutritional-biochemical quality of a dietary fat solely by its content of linoleic acid. Furthermore, they give light on the possible application to clinical and preventive medicine.

  • PDF

Physiological Activity of $\omega3$ Polyunsaturated Fatty Acids in Dark Fleshed Fishes II. Antioxidative Effect on Lipid Peroxidation in Rats ($\omega3$ 고도불포화지방산의 생리활성에 관한 연구 II. 과산화지질에 대한 항산화 작용)

  • CHOI Jin-Ho;Byun Dae-Seok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.22 no.2
    • /
    • pp.109-114
    • /
    • 1989
  • To compare antioxidant action of u 3 polyunsaturated fatty acid (PUFA) on lipid peroxidation in rats, the formation of malondialdehyde (MDA) and membranes of liver and brain and activities of antioxidant-related enzymes such as catalase, glutathione peroxidase, and superoxide dismutase (SOD) in blood, were studied. Malondialdehyde contents of $\omega3$ PUFA and sardine oil groups were significantly decreased compared with lard group as control (p<0.05). Catalase and superoxide dismutase showed higher activities in $\omega3$ PUFA and sardine oil groups than those of lard control group. These findings suggest that fish oil has a inhibitory effect on formation of lipid peroxides in blood and membranes of rats.

  • PDF

The Effect of Ethanol on the Physical Properties of Neuronal Membranes

  • Bae, Moon-Kyoung;Jeong, Dong-Keun;Park, No-Soo;Lee, Cheol-Ho;Cho, Bong-Hye;Jang, Hye-Ock;Yun, Il
    • Molecules and Cells
    • /
    • v.19 no.3
    • /
    • pp.356-364
    • /
    • 2005
  • Intramolecular excimer formation of 1,3-di(1-pyrenyl) propane(Py-3-Py) and fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) were used to evaluate the effect of ethanol on the rate and range of lateral and rotational mobilities of bulk bilayer structures of synaptosomal plasma membrane vesicles (SPMVs) from the bovine cerebral cortex. Ethanol increased the excimer to monomer fluorescence intensity ratio (I'/I) of Py-3-Py in the SPMVs. Selective quenching of both DPH and Py-3-Py by trinitrophenyl groups was used to examine the range of transbilayer asymmetric rotational mobility and the rate and range of transbilayer asymmetric lateral mobility of SPMVs. Ethanol increased the rotational and lateral mobility of the outer monolayer more than of the inner one. Thus ethanol has a selective fluidizing effect within the transbilayer domains of the SPMVs. Radiationless energy transfer from the tryptophans of membrane proteins to Py-3-Py was used to examine both the effect of ethanol on annular lipid fluidity and protein distribution in the SPMVs. Ethanol increased annular lipid fluidity and also caused membrane proteins to cluster. These effects on neuronal membranes may be responsible for some, though not all, of the general anesthetic actions of ethanol.

A solid-state NMR study on the activity of an antimicrobial peptide, magainin 2 (항균성 펩타이드인 magainin 2의 활성에 대한 고체 핵자기 공명 분광 연구)

  • Kim, Chul
    • Analytical Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.460-466
    • /
    • 2011
  • The activity of an antimicrobial peptide, magainin 2, on lipid membranes was investigated using solid-state NMR and a new sampling method that employed mechanically aligned bilayers between thin glass plates. The experiments were performed at two hydration levels. At 95% hydration about 15% of the lipid bilayers were disrupted and at full hydration 20% were disrupted. From the comparison of two equilibrium states established by two sampling methods the importance of peptide binding to the lipid bilayer for whole membrane disruption was demonstrated.

The Solubilization Behavior of DOPE-Immunoliposomes with Immunoglobulin G(IgG) by Added Bile Salts (Immunoglobulin G(IgG)를 함유한 DOPE 리포솜의 제조와 담즙산염에 의한 용해 특성)

  • Lee, Eun-Ok;Kim, Jin-Gu;Kim, Jong-Duk
    • Journal of Pharmaceutical Investigation
    • /
    • v.20 no.3
    • /
    • pp.135-144
    • /
    • 1990
  • The effects of bile salts (BS) on the stability of dioleoylphosphatidylethanolamine (DOPE) liposomes were investigated, observing apparent absorbance of vacant liposomes and calcein release from entrapped liposomes. Unilamellar liposomes were prepared by using a small quantity of palmitoly-immunoglobulin G(IgG) ($2.5{\times}10^{-4}$ mo1/lipid mol) to stabilize the bilayer phase of the unsaturated DOPE which by itself does not form stable liposomes. The destabilization of PE immunoliposomes by papain, clearly demonstrates that the IgG is essential for stabilization of PE bilayer. Approximately 4% of the entrapped calcein was released from the PE liposomes after 1 hr from liposome formation. Calcein release and absorbance of liposomes depended on the BS/lipid ratio because of the solubilization of lipid molecule in bilayer and the formation of mixed micelles. At very low BS concentrations, the incorporation of BS induced BS/lipid aggregates in the outer vesicles monolayer, while high BS concentrations, mixed micelles were formed. Chelate and its conjugates as $3{\alpha},\;7{\alpha},\;12{\alpha}-trihydroxy$ BS induce the concentration of the $3{\alpha}$, $12{\alpha}-dihydroxy$ BS at half-maximal solubilization of immunoliposomes to approximately 2.5-, or 5-fold. Conjugation of BS with glycine or taurine slightly enhanced their capacities to perturb membranes.

  • PDF

Effects of glycyrrhizinic acid, menthol and GA: Mt (2: 1), GA: Mt (4: 1) and GA: Mt (9: 1) supramolecular compounds on mitochondrial functional activity IN VITRO experiments.

  • L. A., Еttibaeva;U. K., Abdurahmonova;A.D., Matchanov;S., Karshiboev
    • Journal of Integrative Natural Science
    • /
    • v.15 no.4
    • /
    • pp.137-144
    • /
    • 2022
  • This paper presents the effect of the supramolecular complex of GA (Glycyrrhizic acid) and Mt(menthol) and GA: Mt (4: 1) obtained on their basis can restore functional dysfunction of the liver mitochondria in alloxan diabetes, ie, inhibit lipid peroxidation. The hypoglycemic activity and mitochondrial membrane stabilizing properties of the supramolecular compound GA: Mt (4: 1) in alloxan diabetes were more pronounced than those of menthol, GA and its GK: Mt (2: 1) and GA: Mt (9: 1) compounds. According to the results obtained, the concentration of GA did not affect the peroxidation of lipid membranes of the liver mitochondria. However, a concentration of 15 μM of GA was found to reduce LPO (lipid peroxidation) formed by the effect of Fe2+ / ascorbate on the mitochondrial membrane by 58.0 ± 5.0% relative to control. The inhibitory effect of GA and its supramolecular compounds in different proportions with menthol on the peroxidation of lipids in rat heart and brain tissue has been studied