• Title/Summary/Keyword: lipid membranes

Search Result 170, Processing Time 0.028 seconds

A Comprehensive Understanding of Model Lipid Membranes: Concepts to Applications

  • Sonam Baghel;Monika Khurana
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.2
    • /
    • pp.89-98
    • /
    • 2023
  • The cell membrane, also known as the biological membrane, surrounds every living cell. The main components of cell membranes are lipids and therefore called as lipid membranes. These membranes are mainly made up of a two-dimensional lipid bilayer along with integral and peripheral proteins. The complex nature of lipid membranes makes it difficult to study and hence artificial lipid membranes are prepared which mimic the original lipid membranes. These artificial lipid membranes are prepared from phospholipid vesicles (liposomes). The liposomes are formed when self-forming phospholipid bilayer comes in contact with water. Liposomes can be unilamellar or multilamellar vesicles which comprises of phospholipids that can be produced naturally or synthetically. The phospholipids are non-toxic, biodegradable and are readily produced on a large scale. These liposomes are mostly used in the drug delivery systems. This paper offers comprehensive literature with insights on developing basic understanding of lipid membranes from its structure, organization, and phase behavior to its potential use in biomedical applications. The progress in the field of artificial membrane models considering methods of preparation of liposomes for mimicking lipid membranes, interactions between the lipid membranes, and characterizing techniques such as UV-visible, FTIR, Calorimetry and X-ray diffraction are explained in a concise manner.

Mechanics of lipid membranes subjected to boundary excitations and an elliptic substrate interactions

  • Kim, Chun Il
    • Coupled systems mechanics
    • /
    • v.6 no.2
    • /
    • pp.141-155
    • /
    • 2017
  • We present relatively simple derivations of the Helfrich energy potential that has been widely adopted in the analysis of lipid membranes without detailed explanations. Through the energy variation methods (within the limit of Helfrich energy potential), we obtained series of analytical solutions in the case when the lipid membranes are excited through their edges. These affordable solutions can be readily applied in the related membrane experiments. In particular, it is shown that, in case of an elliptic cross section of a rigid substrate differing slightly from a circle and subjected to the incremental deformations, exact analytical expressions describing deformed configurations of lipid membranes can be obtained without the extensive use of Mathieu's function.

Effect of Lipid Peroxidation on the Fluidity of Erythrocyte Ghost and Phospholipid Liposomal Membranes

  • Han, Suk-Kyu;Kim, Min;Park, Yeong-Hun;Park, Eun-Ju;Lee, Jeong-Hee
    • Archives of Pharmacal Research
    • /
    • v.15 no.4
    • /
    • pp.309-316
    • /
    • 1992
  • The effects of lipid peroxidation on the fluidity of the lipid bilayers of the human erythrocyte ghosts and egg-lecithin phospholipid liposomes have been studied. For the measurements of the peroxidation extent and the fluidity of the membranes, the thiobarbituric acid-reactive substances and the fluorescence depolarization of 1, 6-diphynyl-1, 3, 5-hexatriene labelled into the membrane were employed, respectively. The lipid peroxidation was performed in hypoxanthine/xanthine oxidase/ferrous ion, and hydrogen peroxide/ferrous ion systems. The results of these experiments show that both of the xanthine oxidase and hydrogen peroxide systems effectively. The lipid peroxidation decreased the fluidity of the membranes, especially at the very early stage of the peroxidation reaction. The decrease in the fluidity of membrane by the lipid peroxidation has been ascribed to the alteration of the polyunsaturated acyl chains of lipids and cross linkages among the membrane components. However, under drastic condition of lipid peroxidation, tdhe fluidity of the membrane rather increased possibly due to the deterioration of the membrane integrity by the peroxidation. Morphological change of the erythrocyte on peroxidation has also been observed.

  • PDF

Facially Amphiphilic Architectures as Potent Antimicrobial Peptide Mimetics: Activity and Biophysical Insight

  • Tew Gregory N.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.261-261
    • /
    • 2006
  • Membranes are a central feature of all biological systems and their ability to control many cellular processes is critically important. As a result, a better understanding of how molecules bind to biological membranes is an active area of research. In this report, the interaction between our biomimetic structures and different biological membranes is reported using both model vesicle and in vitro bacterial cell experiments. These results show that lipid composition is more important for selectivity than overall net charge. An effort is made to connect model vesicle studies with in vitro data and naturally occurring lipid compositions.

  • PDF

Increased Activity of Large Conductance $Ca^{2+}-Activated$ $K^+$ Channels in Negatively-Charged Lipid Membranes

  • Park, Jin-Bong;Ryu, Pan-Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.4
    • /
    • pp.529-539
    • /
    • 1998
  • The effects of membrane surface charge originated from lipid head groups on ion channels were tested by analyzing the activity of single large conductance $Ca^{2+}-activated\;K^+$ (maxi K) channel from rat skeletal muscle. The conductances and open-state probability ($P_o$) of single maxi K channels were compared in three types of planar lipid bilayers formed from a neutral phosphatidylethanolamine (PE) or two negatively-charged phospholipids, phosphatidylserine (PS) and phosphatidylinositol (PI). Under symmetrical KCl concentrations $(3{\sim}1,000\;mM)$, single channel conductances of maxi K channels in charged membranes were $1.1{\sim}1.7$ times larger than those in PE membranes, and the differences were more pronounced at the lower ionic strength. The average slope conductances at 100 mM KCl were $251{\pm}9.9$, $360{\pm}8.7$ and $356{\pm}12.4$ $(mean{\pm}SEM)$ pS in PE, PS and PI membranes respectively. The potentials at which $P_o$ was 1/2, appeared to have shifted left by 40 mV along voltage axis in the membranes formed with PS or PI. Such shift was consistently seen at pCa 5, 4.5, 4 and 3.5. Estimation of the effect of surface charge from these data indicated that maxi K channels sensed the surface potentials at a distance of $8{\sim}9\;{\AA}$ from the membrane surface. In addition, similar insulation distance ($7{\sim}9\;{\AA}$) of channel mouth from the bilayer surface charge was predicted by a 3-barrier-2-site model of energy profile for the permeation of $K^+$ ions. In conclusion, despite the differences in structure and fluidity of phospholipids in bilayers, the activities of maxi K channels in two charged membranes composed of PS or PI were strikingly similar and larger than those in bilayers of PE. These results suggest that the enhancement of conductance and $P_o$ of maxi channels is mostly due to negative charges in the phospholipid head groups.

  • PDF

INITIATION OF LIPID PEROXIDATION AS A RESULT OF THE COMBINED ACTION OF FERRIC IRON AND LIGHT ON MEMBRANES

  • Park, Zee-Yong;Kim, Chang-Sook;Jung, Jin
    • Journal of Photoscience
    • /
    • v.1 no.2
    • /
    • pp.83-88
    • /
    • 1994
  • The synergic effect of iron plus blue light on the peroxidation of membrane lipid was investigated, using liposomes made of phospholipid. While strong irradiation did not affect Fe$^{+2}$-promoted lipid peroxidation that turned out to be O$_2$-dependent, ferric iron in bright light exerted a pronounced effect on the initiation of lipid peroxidation: this combined action of light and Fe$^{+3}$ on liposomal membranes was apparently independent of O$_2$. When liposomal samples containing Fe$^{+3}$ were subjected to irradiation, some portions of Fe$^{+3}$ were converted into Fe$^{+2}$. The extent of the Fe$^{+3}$-Fe$^{+2}$ conversion increased with increasing time of irradiation, which resembled the dependence of Fe$^{+3}$-promoted lipid peroxidation on irradiation. Further, it was observed that the effect of irradiation in liposomal samples containing Fe$^{+2}$ was strikingly mimicked by that of Fe$^{+2}$ addition to the same samples. The obligatory requirement of a suitable Fe$^{+3}$/Fe$^{+2}$ ratio for the genesis of iron-dependent lipid peroxidation, a controversial proposition, was also confirmed by the observation that lipid peroxidation was substantially enhanced by the addition of a mixture of Fe$^{+3}$ and Fe$^{+2}$, as compared to the addition of Fe$^{+3}$ or Fe$^{+2}$ alone. The results obtained in this study not only suggest that light acts as an effector for initiating lipid peroxidation, when Fe$^{+3}$ is present in membrane systems, but also imply that any chemical or physical factor that influences the redox states of iron in membranes can play a role in lipid peroxidation reactions.

  • PDF

The Effect of Dibucaine.HCl on the Physical Properties of Neuronal Membranes

  • Jang, Hye-Ock;Hyun, Cheol-Ho;Yoon, Jin-Hyeok;Kang, Yong-Gyu;Park, Sung-Min;Park, Young-Sik;Park, Jun-Seop;Ok, Jin-Seok;Lee, Dong-Hun;Bae, Moon-Kyung;Yun, Il
    • Journal of Photoscience
    • /
    • v.12 no.2
    • /
    • pp.67-73
    • /
    • 2005
  • Fluorescent probe techniques were used to evaluate the effect of dibucaine.HCl on the physical properties (transbilayer asymmetric lateral mobility, annular lipid fluidity and protein distribution) of synaptosomal plasma membrane vesicles (SPMV) isolated from bovine cerebral cortex. An experimental procedure was used based on selective quenching of 1,3-di(l-pyrenyl)propane (Py-3-Py) by trinitrophenyl groups, and radiationless energy transfer from the tryptophans of membrane proteins to Py-3-Py. Dibucaine.HCl increased the bulk lateral mobility, and annular lipid fluidity in SPMV lipid bilayers, and had a greater fluidizing effect on the inner monolayer than the outer monolayer. The magnitude of increasing effect on annular lipid fluidity in SPMV lipid bilayer induced by dibucaine.HCl was significantly far greater than magnitude of increasing effect of the drug on the lateral mobility of bulk SPMV lipid bilayer. It also caused membrane proteins to cluster. These effects of dibucaine.HCl on neuronal membranes may be responsible for some, though not all, of the local anesthetic actions of dibucaine.HCl.

  • PDF

A Solid-state NMR Study of the Kinetics of the Activity of an Antimicrobial Peptide, PG-1 on Lipid Membranes

  • Kim, Chul;Wi, Sungsool
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.426-432
    • /
    • 2012
  • The activity of an antimicrobial peptide, protegrin-1 (PG-1), on lipid membranes was investigated using solidstate NMR and a new sampling method that employed mechanically aligned bilayers between thin glass plates. At 95% hydration and full hydration, the peptide respectively disrupted 25% and 86% of the aligned 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphotidylcholine (POPC) bilayers at a P/L (peptide-to-lipid) ratio of 1/20 under the new experimental conditions. The kinetics of the POPC bilayers disruption appeared to be diffusioncontrolled. The presence of cholesterol at 95% hydration and full hydration reduced the peptide disruption of the aligned POPC bilayers to less than 10% and 35%, respectively. A comparison of the equilibrium states of heterogeneously and homogeneously mixed peptides and lipids demonstrated the importance of peptide binding to the biomembrane for whole membrane disruption.

Blue Light Effect on the Fatty Acid Composition of Membrane Lipid of Plant Leaves (식물 세포막의 지방산 조성에 미치는 고강도 청색광선의 효과)

  • Jung, Bo-Kung;Kim, Chang-Sook;Jung, Jin
    • Korean Journal of Environmental Agriculture
    • /
    • v.11 no.3
    • /
    • pp.261-268
    • /
    • 1992
  • The membranes of mitochondria and chloroplasts contain a number of pigments that can act as endogenous sensitizers to produce activated oxygen species, most efficiently in blue light, which, in turn, attack functional targets in membranes. Therefore, intense blue light from the sun can exert various adverse effects on the functional and structural integrity of the membranes: one of the biochemical events of these negative effects could be the oxidative degradation of the unsaturated fatty acid constituents of membrane polar lipid. It may be assumed that as a strategy to avoid the light induced fatty acid degradation in membranes plant cells, responding to high intensity blue light, change the fatty acid compositions of membrane lipid in such that more-unsaturated fatty acid constituents are replaced by lessunsaturated fatty acid constituents. The results obtained in the present study, most importantly the measurements of double bond index of membrane polar lipid in concert with other measurements such as light quaility-dependent membrane peroxidation and the activities of membrane-bound proteins, seem to support this assumption.

  • PDF

Property Characterization and Lipid - Compositional Analysis of Lipid Granules Isolated from an Oleaginous Yeast Rhodotorula glutinis

  • Ham, Kyung-Sik;Rhee, Joon-Shick
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.3
    • /
    • pp.211-215
    • /
    • 1998
  • Preparative isolation of lipid granules from Fhodotorula glutinis, which has been studied for long time to produce edible lipids, was carried out by flotation method in Ficoll-Linear density gradient. When the isolated lipid granules were suspended in a series of solutions containing varying concentration of osmotic stabilizer (sorbitoal and mannitol) ranging from 0.8M to 0M, the lipid granules appeared to be disrupted at a concentration between 0.8M and 0.7, and again at a concentration below 0.1M, suggesting that lipid granules have a membraneous structure and that at least two types of lipid granules are present. Compositional analysis of lipids from lipid granules revealed that lipids are composed mainly of neutral lipids (87.8% of total lipids), predominantly as triacylglycerols (71.89%). Marked differences were observed inphospholipids between lipids of lipid granules and those of whole cells . The major components of phospholipids in lipid granules and inwhole cells are phosphatidylcholine(38.6%) and phosphatidylserine(42.8%), respectively. In addition, significant differences were also observed in the fatty acid composition of phospholipids. As phospholipids are important structural components of membranes, these differences lead to the suggesting that the membrane of lipid granules may be distinct functionally and structurally from other membranes of yeast cells. The major fatty acid components of neutral lipidss of whole cells and lipid granules are palmitic , oleic and linoleic acid. However , degreeof fatty acid unsaturation of neutal lipids of lipid granules was much lower than that of neutral lipids of whole cells.

  • PDF