• 제목/요약/키워드: lipchitz condition

검색결과 4건 처리시간 0.025초

Indirect Adaptive Fuzzy Observer Design

  • Yang, Jong-Kun;Hyun, Chang-Ho;Kim, Jae-Hun;Kim, Eun-Tai;Park, Mi-Gnon
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 추계학술대회 학술발표 논문집 제14권 제2호
    • /
    • pp.192-196
    • /
    • 2004
  • This paper proposes an alternative observation scheme, T-S fuzzy model based indirect adaptive fuzzy observer. Nonlinear systems are represented by fuzzy models since fuzzy logic systems are universal approximators. In order to estimate the unmeasurable states of a given nonlinear system, T-S fuzzy modeling method is applied to get the dynamics of an observation system. T-S fuzzy system uses the linear combination of the input state variables and the modeling applications of them to various kinds of nonlinear systems can be found. The adaptive fuzzy scheme estimates the parameters comprising the fuzzy model representing the observation system. The proposed indirect adaptive fuzzy observer based on T-S fuzzy model can cope with not only unknown states but also unknown parameters. In the process of deriving adaptive law, the Lyapunov theory and Lipchitz condition are used. To show the performance of the proposed observation method, it is applied to an inverted pendulum on a cart.

  • PDF

Indirect Adaptive Fuzzy Observer Design

  • Yang, Jong-Kun;Hyun, Chang-Ho;Kim, Jae-Hun;Kim, Eun-Tai;Park, Mignon
    • 한국지능시스템학회논문지
    • /
    • 제14권7호
    • /
    • pp.927-933
    • /
    • 2004
  • This paper proposes an alternative observation scheme, T-S fuzzy model based indirect adaptive fuzzy observer. Nonlinear systems are represented by fuzzy models since fuzzy logic systems are universal approximators. In order to estimate the unmeasurable states of a given nonlinear system, T-S fuzzy modeling method is applied to get the dynamics of an observation system. T-S fuzzy system uses the linear combination of the input state variables and the modeling applications of them to various kinds of nonlinear systems can be found. The adaptive fuzzy scheme estimates the parameters comprising the fuzzy model representing the observation system. The proposed indirect adaptive fuzzy observer based on T-S fuzzy model can cope with not only unknown states but also unknown parameters. In the process of deriving adaptive law, the Lyapunov theory and Lipchitz condition are used. To show the performance of the proposed observation method, it is applied to an inverted pendulum on a cart.

T-S Fuzzy Model Based Indirect Adaptive Fuzzy Observer Design

  • Hyun Chang-Ho;Kim You-Keun;Kim Euntai;Park Mignon
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 ICEIC The International Conference on Electronics Informations and Communications
    • /
    • pp.348-353
    • /
    • 2004
  • This paper proposes an alternative observation scheme, T-S fuzzy model based indirect adaptive fuzzy observer. Nonlinear systems arc represented by fuzzy models since fuzzy logic systems arc universal approximators. In order to estimate the unmeasurable states of a given nonlinear system, T-S fuzzy modeling method is applied to get the dynamics of an observation system. T-S fuzzy system uses the linear combination of the input state variables and the modeling applications of them to various kinds of nonlinear systems can be found. The adaptive fuzzy scheme estimates the parameters comprising the fuzzy model representing the observation system. The proposed indirect adaptive fuzzy observer based on T-S fuzzy model can cope with not only unknown states but also unknown parameters. In the process of deriving adaptive law, the Lyapunov theory and Lipchitz condition are used. To show the performance of the proposed observation method, it is applied to an inverted pendulum on a cart.

  • PDF

Design of T-S Fuzzy Model based Adaptive Fuzzy Observer and Controller

  • Ahn, Chang-Hwan
    • 조명전기설비학회논문지
    • /
    • 제23권11호
    • /
    • pp.9-21
    • /
    • 2009
  • This paper proposes the alternative observer and controller design scheme based on T-S fuzzy model. Nonlinear systems are represented by fuzzy models since fuzzy logic systems are universal approximators. In order to estimate the unmeasurable states of a given unknown nonlinear system, T-S fuzzy modeling method is applied to get the dynamics of an observation system. T-S fuzzy system uses the linear combination of the input state variables and the modeling applications of them to various kinds of nonlinear systems can be found. The proposed indirect adaptive fuzzy observer based on T-S fuzzy model can cope with not only unknown states but also unknown parameters. The proposed controller is based on a simple output feedback method. Therefore, it solves the singularity problem, without any additional algorithm, which occurs in the inverse dynamics based on the feedback linearization method. The adaptive fuzzy scheme estimates the parameters and the feedback gain comprising the fuzzy model representing the observation system. In the process of deriving adaptive law, the Lyapunov theory and Lipchitz condition are used. To show the performance of the proposed observer and controller, they are applied to an inverted pendulum on a cart.