• Title/Summary/Keyword: lipase catalyst

Search Result 17, Processing Time 0.02 seconds

Production of Biodiesel from Fleshing Scrap Using Immobilized Lipase-catalyst (Lipase-catalyst를 이용한 프레싱 스크랩의 바이오디젤 제조에 관한 연구)

  • Shin, Soo-Beom;Min, Byung-Wook;Yang, Seung-Hun;Park, Min-Seok;Kim, Hae-Sung;Kim, Baik-Ho;Baik, Doo-Hyun
    • Applied Biological Chemistry
    • /
    • v.51 no.3
    • /
    • pp.177-182
    • /
    • 2008
  • This study was carried out to investigate the reaction of lipase-catalyst transesterification using animal fat recovered from fleshing scrap generated during leather making process. Transesterification reaction between fat and primary or secondary alcohol was carried out under the condition of immobilized enzyme catalyst. The conversion rate was the highest when 1.5 mole of methanol was injected by 4 times. As for lipase, Candida antarctica showed the highest conversion rate of 82.2% among the 4 different lipases. It was found that water contained in the fat causes lower conversion rate. The condition of 1.2wt. % of water in the fat decreased the conversion rate by 40%. It was considered that the resulted reactant, fatty acid ester could be used as raw material for biodiesel with the characteristics of not generating SOx and diminishing smoke.

Potential Yeast from Indonesian Wild Forest Honey Showing Ability to Produce Lipase for Lipid Transesterification

  • Palilu, Prayolga Toban;Kasiamdari, Rina Sri;Ilmi, Miftahul
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.4
    • /
    • pp.555-564
    • /
    • 2019
  • Biodiesel is produced through the transesterification process in the presence of alcohol and a catalyst that catalyzes the conversion of triglycerides to esters and glycerol compounds. A more optimal product conversion can be achieved using enzymes, such as lipase. Lipase is reported to be produced in osmophilic yeasts due to the low water content in their natural habitats. Wild forest honey is one of the osmophilic natural habitats in Indonesia. However, lipase-producing yeast has not been reported in the Indonesian honey. In this study, we screened the lipase-producing yeasts isolated from wild forest honey collected from Central Sulawesi. The production profile and activity of lipase were determined at different pH values and temperatures. One promising yeast was isolated from the honey, which was identified as Zygosaccharomyces mellis SG 1.2 based on ITS sequence. The maximum lipase production (24.56 ± 1.30 U/mg biomass) was achieved by culturing the strain in a medium containing 2% olive oil as a carbon source at pH 7 and 30℃ for 40 h. The optimum pH and temperature for lipase activity were 6 and 55℃, respectively. The enzyme maintained 80% of its activity upon incubation at 25℃ for 4 h. However, the enzyme activity decreased by more than 50% upon incubation at 35 and 40℃ for 2 h. This is the first study to report the lipase producing capability of Z. mellis. Further studies are needed to optimize the enzyme production.

Transesterification Using the Cross-Linked Enzyme Aggregate of Photobacterium lipolyticum Lipase M37

  • Han, Jin-Yee;Kim, Hyung-Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.11
    • /
    • pp.1159-1165
    • /
    • 2011
  • Biodiesel is methyl and ethyl esters of long-chain fatty acids produced from vegetable oils or animal fats. Lipase enzymes have occasionally been used for the production of this biofuel. Recently, biodiesel production using immobilized lipase has received increased attention. Through enhanced stability and reusability, immobilized lipase can contribute to the reduction of the costs inherent to biodiesel production. In this study, methanol-tolerant lipase M37 from Photobacterium lipolyticum was immobilized using the cross-linked enzyme aggregate (CLEA) method. Lipase M37 has a high lysine content (9.7%) in its protein sequence. Most lysine residues are located evenly over the surface of the protein, except for the lid structure region, which makes the CLEA preparation yield quite high (~93%). CLEA M37 evidences an optimal temperature of $30^{\circ}C$, and an optimal pH of 9-10. It was stable up to $50^{\circ}C$ and in a pH range of 4.0-11.0. Both soluble M37 and CLEA M37 were stable in the presence of high concentrations of methanol, ethanol, 1-propanol, and n-butanol. That is, their activities were maintained at solvent concentrations above 10% (v/v). CLEA M37 could produce biodiesel from olive oil and alcohols such as methanol and ethanol. Additionally, CLEA M37 generated biodiesel via both 2-step methanol feeding procedures. Considering its physical stability and reusability, CLEA M37 may potentially be used as a catalyst in organic synthesis, including the biodiesel production reaction.

The Optimum Effect of Long Chain Fatty Monoglyceride from Microemulsion by Lipase Catalyst (마이크로에멀젼에서 리파아제 촉매에 의한 고급지방산 모노글리세리드의 생성에 있어 최적효과)

  • Ro, Yoon-Chan;Nam, Ki-Dae;Kim, Jin-Tak;Jo, Kyung-Haeng
    • Applied Chemistry for Engineering
    • /
    • v.5 no.2
    • /
    • pp.209-214
    • /
    • 1994
  • Mono alkyl glycerides have bean obtained in good yield by enzyme catalyst from soybean oil. The reaction was carried out in an oil rich microemulsion formula. Best results were obtained with sodium bis(2-ethyl hexyl) sulfo succinate(AOT), isooctane as hydrocarbon component and buffer of pH 7. The enzyme used was a 1,3-specific lipase which leaves the 2-position intact. However, the 2-monoglyceride formed slowly undergoes long chain acyl migration to 1-mono-glyceride. Optimal reaction time at $35^{\circ}C$ reaction temperature was found to be three hour.

  • PDF

The Hydrolysis of Soybean Oil by Lipase Enzyme Catalyst (Lipase 효소촉매에 의한 대두유의 가수분해)

  • Lee, Jeong-Tae;Kim, Eui-Yong
    • KSBB Journal
    • /
    • v.23 no.6
    • /
    • pp.509-512
    • /
    • 2008
  • The hydrolysis reaction of soybean oil was conducted experimentally by various source enzymes. The analytical result of hydrolysate of soybean oil showed that the compositions were linoleic acid, olic acid, palmitic acid, and stearic acid in order. The enzymes CR-E and CC-E from Candida rufosa and Candida cylindracea had two hold or more hydrolysis conversions than those of Lipase 16, Novozyme 871, and Lipolase-100L under the same conditions. Therefore CR-E and CC-E were selected for further experiments. These two enzymes had similar ranges of optimun conditions as follows: pH 3-6, $35-45^{\circ}C$, and water to soybean oil ratio of 3.3 or above. They finally got conversions 95% above.

Optical Resolution of Racemic Ibuprofen by Candida Rugosa Lipase Catalyzed esterification (Candida Rugosa Lipase에 의한 Ibuprofen 에스테르화 반응과 광학분할)

  • 홍중기;김광제;소원욱;문상진;이용택
    • KSBB Journal
    • /
    • v.17 no.6
    • /
    • pp.543-548
    • /
    • 2002
  • The enantioselective esterification of racemic ibuprofen catalyzed by a Candida rugosa lipase was studied according to reaction conditions such as a lipase concentration, reaction temperature, alcohol chain length and alcohol concentration. The S-(+)-ibuprofen alkyl esters prepared were converted to S-(+)-ibuprofen by hydrolysis with sulfuric acid as a catalyst. High conversions in the esterifications were obtained at 60$^{\circ}C$ and an equimolar ratio of octanol to ibuprofen. The initial reaction rate of the esterification decreased with increasing octanol concentration. Conversion and initial reaction rate increased with increasing alcohol chain length. Values of enantiomeric excess(ee) according to esterification reaction conditions did not change below 60$^{\circ}C$. On the other hand, values of conversion and ee for the chemical hydrolysis of S-(+)-ibuprofen alkyl esters were independent of alcohol alkyl chain length. Optical resolution of racemic ibuprofen was achieved by lipase catalyzed esterification and chemical hydrolysis. The separation method provided a high yield and enantioselectivity for the production of S-(+)-ibuprofen from racemic ibuprofen.

Dynamic Kinetic Resolutions and Asymmetric Transformations by Enzyme-Metal Combo Catalysis

  • Kim, Mahn-Joo;Ahn, Yang-Soo;Park, Jai-Wook
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.4
    • /
    • pp.515-522
    • /
    • 2005
  • Enzyme-metal combo catalysis is described as a useful methodology for the synthesis of optically active compounds. The key point of the method is the use of enzyme and metal in combination as the catalysts for the complete transformation of racemic substrates to single enantiomeric products through dynamic kinetic resolution (DKR). In this approach, enzyme acts as an enantioselective resolving catalyst and metal does as a racemizing catalyst for the efficient DKR. Three kinds of enzyme-metal combinations - lipase-ruthenium, subtilisin-ruthenium, and lipase-palladium –have been developed as the catalysts for the DKRs of racemic alcohols, esters, and amines. The scope of the combination catalysts can be extended to the asymmetric transformations of ketones, enol acetates, and ketoximes via the DKRs. In most cases studied, enzyme-metal combo catalysis provided enantiomerically-enriched products in high yields.

Production of Biodiesel Using Immobilized Lipase from Proteus vulgaris (Proteus vulgaris에서 유래한 리파아제의 고정화 및 바이오디젤 생산)

  • Yoon, Shin-Ah;Han, Jin-Yee;Kim, Hyung-Kwoun
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.3
    • /
    • pp.238-244
    • /
    • 2011
  • Biodiesel, mono-alkyl esters of long chain fatty acids, is one of the alternative fuels derived from renewable lipid feedstock, such as vegetable oils or animal fats. For decade, various lipases have been used for the production of biodiesel. However, the production of biodiesel by enzymatic catalyst has profound restriction in industry application due to high cost. To overcome these problems, many research groups have studied extensively on the selection of cheap oil sources, the screening of suitable lipases, and development of lipase immobilization methods. In this study, we produced biodiesel from plant oil using Proteus vulgaris lipase K80 expressed in Escherichia coli cells. The recombinant lipase K80 was not only expressed in high level but also had high specific lipase activity and high stability in various organic solvents. Lipase K80 could produce biodiesel from olive oil by 3-stepwise methanol feeding method. The immobilized lipase K80 also produced biodiesel using the same 3-stepwise method. The immobilized lipase could produce biodiesel efficiently from various plant oils and waste oils.

Synthesis of $\beta$-Sitosterol Esters with Conjugated Linoleic Acid and Medium Chain Fatty Acids by Using Lipase as Catalyst

  • Vu, Phuong-Lan;Lee, Ki-Teak
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2003.04a
    • /
    • pp.104.2-105
    • /
    • 2003
  • Plant steryl esters have good effects on plasma cholesterol level and are used as functional food ingredient. Conjugated linoleic acid (CLA) presents mainly in animal foods and has a good benefit and medium chain fatty acids (MCFAs) are a rapid energy source for human. In this study, we produced the ${\beta}$-sitosterol esters from CLA and MCFAs using various lipases as catalysts. Among lipases, AYS (from Candida rugosa) was the most effective for synthesis of ${\beta}$-sitosterol esters in the presence of water (24.35% conversion) or hexane (25.33% conversion). The second esterification extent was obtained by lipase AK (from Pseudomonas sp), showing 10.26% conversion in water and 15.94% conversion in hexane, respectively. The reaction condition was 1:3 molar ratio (${\beta}$-sitosterol:fatty acid, 1:3) and stirred (175 rpm) at 55$^{\circ}C$ in water bath shaker for 48h.

  • PDF

Solid Bases as Racemization Catalyst for Lipase-catalyzed Dynamic Kinetic Resolution of Naproxen 2,2,2-Trifluoroethyl Thioester (리파아제에 의한 나프록센 2,2,2-트리플로로에틸 씨오에스터의 Dynamic Kinetic Resolution을 위한 라세미화 촉매로서의 고체 염기)

  • 김상범;원기훈;문상진;김광제;박홍우
    • KSBB Journal
    • /
    • v.19 no.3
    • /
    • pp.215-220
    • /
    • 2004
  • A variety of solid bases such as inorganic bases, basic anion exchange resins, and resin-bound bases were tested as a catalyst for racemization of (S)-naproxen 2,2,2-trifluoroethyl thioester in isooctane at 45$^{\circ}C$. Among the various bases, DIAIOM WA30, which is a weakly basic anion exchange resin with a tertiary amine based on a highly porous type styrene-divinylbenzene copolymer, showed the highest catalytic activity. The second-order interconversion constant of DIAION WA30 was 8.6${\times}$10$\^$-4/ mM$\^$-1/h$\^$-1/ and about 3 times higher than that of trioctylamine under the same conditions. The rate of DIAION WA30-catalyzed racemization decreased with increasing an amount of water added to the reaction medium. Lipase-catalyzed kinetic resolution of racemic naproxen 2,2,2-trifluoroethyl thioester was successfully carried out under in situ racemization of substrate with DIAION WA30 in isooctane at 45$^{\circ}C$. More than 60% conversion and 99% enantiomeric excess for the desired (S)-naproxen product were obtained. Furthermore, such a solid base catalyst could be easily separated and reused in contrast to trioctylamine.