• Title/Summary/Keyword: lipase PS

Search Result 15, Processing Time 0.023 seconds

Degradation Behavior of Medical Resorbable Composite Materials Interposed in the Poly(glycolic acid) (Poly(glycolic acid)를 심선에 지닌 의료용 흡수성 복합재료의 생분해 거동)

  • Lee, Chan-Woo
    • Polymer(Korea)
    • /
    • v.31 no.3
    • /
    • pp.233-238
    • /
    • 2007
  • The purpose of the study is to apply composites of poly (glycolic acid) (PGA) with [poly(R) 3-hydroxybutyrate] (P3HB) or poly (butylenes succinate- co-L-lactate) (PBSL) as medical resorbable composite materials with the complement of hydrolysis rate of each component. As a result, it was confirmed that the PBSL/PGA and P3HB/PGA composite fiber were hydrolyzed in phosphate buffer solution. Also, it has been revealed that the degradation of PBSL/PGA are accelerated due to PGA producing glycolic acid which can act as a catalyst. In addition, the hydrolysis of PBSL/PGA was found to be accelerated by the presence of lipase PS. When the PBSL/PGA composite fiber was placed in the air, not much hydrolysis has proceeded. Also, it was confirmed that the P3HB/PGA composite fiber maintained proper tensile strength in the air. Therefore, these complex fibers can be adapted to use as environmentally suitable, medically absorbable composite materials.

Lipase-catalyzed Production of Solid Fat Containing Conjugated Linoleic Acid in Binary Models

  • Zhu, Xue-Mei;Alim, Abdul;Hu, Jiang-Ning;Adhikari, Prakash;Lee, Jeung-Hee;Lee, Ki-Teak
    • Food Science and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.803-807
    • /
    • 2009
  • Solid fats were esterified with solid phase of rice bran oil (S-RBO), palm stearin (PS), and conjugated linoleic acid (CLA) at 2 substrate mole ratios (S-RBO:PS:CLA of 1:1:2 and 1:3:4). The major fatty acids were palmitic, oleic, and CLA in 36 hr products. The solid fat content (SFC) of the 1:1:2 product was 12.8% while the SFC of 1:3:4 product was 45.1% at $20^{\circ}C$. The SFCs after $20^{\circ}C$ reduced when the reaction time increased from 1 to 36 hr, suggesting that the change of triacylglycerol species was augmented by extending reaction time.

Characterization of Scaled-up Low-Trans Shortening from Rice Bran Oil and High Oleic Sunflower Seed Oil with Batch Type Reactor (회분식반응기를 이용한 미강유, 팜스테아린과 고올레인산 해바라기씨유 유래 대량 제조된 저트랜스 쇼트닝의 특성 연구)

  • Kim, Ji-Young;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.3
    • /
    • pp.338-345
    • /
    • 2009
  • Scaled-up low-trans shortening (LTS) was produced by lipase-catalyzed interesterification. Blend of rice bran oil (RBO), palm stearin (PS) and high oleic sunflower seed oil (HO) with 1:2:0.9 (w/w/w) ratio was interesterified using immobilized lipase from Thermomyces lanuginosus (TLIM) in the batch type reactor at $65^{\circ}C$ for 24 hr, and physicochemical melting properties of LTS were compared with commercial shortening. Solid fat content (SFC) of commercial shortening (used as control) and LTS was similar at 9.56 and 8.77%, respectively, at $35^{\circ}C$. Major fatty acids in LTS were C16:1 (33.7 wt%), C18:1 (45.7 wt%) and C18:2 (13.4 wt%). Trans fatty acid content in the commercial shortening (4.8 wt%) was higher than that of LTS (0.5 wt%). After reverse-phase HPLC analysis, major triacylglycerol (TAG) species in LTS were POO, POP and PLO. Total tocopherol, ${\gamma}$-oryzanol and phytosterol contents in the LTS were 12.37, 0.43 and 251.38 mg/100 g, respectively. Hardness of LTS was similar to that of commercial shortening. Also, x-ray diffraction analysis showed coexistence of ${\beta}'$ and ${\beta}$ form in the LTS.

Modification of Palm Mid Fraction with Stearic Acid by Enzymatic Acidolysis Reaction (효소적 Acidolysis를 이용한 Stearic Acid 함유 팜중부유의 개질)

  • Jeon, Mi-Sun;Lee, Yun-Jeung;Kang, Ji-Hyun;Lee, Jeung-Hee;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.4
    • /
    • pp.479-485
    • /
    • 2009
  • The acidolysis was performed to produce structured lipid with palm mid fraction (PMF) and stearic acid for 7, 24, and 36 hr at $70^{\circ}C$. The reaction was catalyzed by lipozyme TLIM (immobilized lipase from Thermonyces lanuginosa, amount of 10% and 20% by weight of total substrates) in the shaking water bath. The reaction conditions for maximum incorporation of stearic acid on the structured lipid were obtained when molar ratio of PMF and stearic acid was 1:2; concentration of lipozyme TLIM was 20wt%; reaction temperature was $70^{\circ}C$; and reaction time was 36 hr. After reaction under this condition, incorporation of stearic acid in the structured lipid was obtained up to 36.3% while the major components of triacylglycerol were 1,2-dipalmitoyl-3-stearoylglycerol (PPS, 28.19 area%), 1-palmitoyl-2-oleoyl-3-stearoylglycerol (POS/PSO, 20.70 area%) and 1-palmitoyl-2,3-distearoylglycerol (PSS, 18.13 area%). However, the fatty acid composition at the sn-2 position suggested that the positional specificity of lipozyme TLIM was not observed due to the acyl migration.

Development and Physical Properties of Low-Trans Spread Fat from Canola and Fully Hydrogenated Soybean Oil by Lipase-Catalyzed Synthesis (카놀라유와 대두극도경화유로부터 효소적으로 합성된 저트랜스 스프레드 고체지의 특성)

  • Kim, Young-Joo;Lyu, Hyun-Kyeong;Shin, Jung-Ah;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.9
    • /
    • pp.1328-1334
    • /
    • 2010
  • Low-trans spread fat (LTSF) was produced by lipase-catalyzed synthesis of canola (CO) and fully hydrogenated soybean oil (FHSBO) at 65:35 (w/w). Blend of CO and FHSBO with 65:35 ratio was interesterified using Lipozyme TLIM (immobilized Thermomyces lanuginosus, 20% of total substrate) in a 1 L-batch type reactor at $70^{\circ}C$ with 500 rpm for 24 hr. Then, physicochemical melting properties of LTSF were compared with commercial spread fat. At $20^{\circ}C$, solid fat contents (SFC) of commercial spread fat as a control and LTSF were similar, showing 19.1 and 18.1%, respectively. Major compositional fatty acids of LTSF were C18:0, C18:1 and C18:2 (29.2, 41.8 and 13.3 wt%, respectively). Trans fatty acid content of the LTSF (0.2 wt%) was lower than that of commercial spread fat (5.5 wt%). In the RP-HPLC analysis from LTSF, major triacylglycerol (TAG) molecules were SOL (stearoyl-oleoyl-linoleyl), SOO, POS/PSP, and SOS. Also, polymorphic form and x-ray diffraction of LTSF showed coexistence of $\beta$' and $\beta$ form crystals.