Poly(glycolic acid)를 심선에 지닌 의료용 흡수성 복합재료의 생분해 거동

Degradation Behavior of Medical Resorbable Composite Materials Interposed in the Poly(glycolic acid)

  • 이찬우 (호서대학교 첨단산업공학과)
  • Lee, Chan-Woo (Department of Innovative Industrial Technology, Hoseo University)
  • 발행 : 2007.05.31

초록

Poly(glycolic acid) (PGA)와 poly [(R) -3-hydrokybutyrate] (P3HB) 및 poly(butylenes succinate-co-L-lactate) (PBSL) 복합재료를 체내에서 서로 다른 가수분해속도를 보완하여 저가의 의료용 흡수성 복합재료로 응용하고자 연구하였다. 그 결과 PBSL/PGA와 P3HB/PGA 복합섬유는 인산염 완충용액 중에서 가수분해되는 것이 확인되었으며, PBSL/PGA 복합섬유는 PGA의 분해에 의해 발생된 glycolic acid에 의해 PBSL의 분해가 촉진되는 메카니즘이 확인되었다. PBSL/PGA 복합섬유는 lipase PS가 존재함에 의해 상당히 빠른 가수분해가 발생하는 것이 확인되었으며, 대기중에서는 거의 가수분해가 발생되지 않는 것을 알 수 있었다. P3HB/PGA 복합섬유 역시 대기중에서 적당한 인장강도를 유지하고 있는 것이 확인된 것으로 보아 본 연구를 통하여 이들 복합섬유는 의료용 흡수성 복합재료와 환경 적합재료로서 응용이 가능할 것으로 판단된다.

The purpose of the study is to apply composites of poly (glycolic acid) (PGA) with [poly(R) 3-hydroxybutyrate] (P3HB) or poly (butylenes succinate- co-L-lactate) (PBSL) as medical resorbable composite materials with the complement of hydrolysis rate of each component. As a result, it was confirmed that the PBSL/PGA and P3HB/PGA composite fiber were hydrolyzed in phosphate buffer solution. Also, it has been revealed that the degradation of PBSL/PGA are accelerated due to PGA producing glycolic acid which can act as a catalyst. In addition, the hydrolysis of PBSL/PGA was found to be accelerated by the presence of lipase PS. When the PBSL/PGA composite fiber was placed in the air, not much hydrolysis has proceeded. Also, it was confirmed that the P3HB/PGA composite fiber maintained proper tensile strength in the air. Therefore, these complex fibers can be adapted to use as environmentally suitable, medically absorbable composite materials.

키워드

참고문헌

  1. T. Kitao, Y. Kimura, T. Konishi, M. Araki, Y. Sugiyama, and S. Ohya, Koubunnshi Ronbunshu, 41, 717 (1984)
  2. Y. Furuhashi, H. Ito, T. Kikutani, T. Yamamoto, and M. Kimizu, Sen-i Gakkaishi, 53, 356 (1997)
  3. K. Nakayama, T. Saito, T. Fukui, Y. Shirakura, and K. Tomita, Biochimica et Biophysica Acta, 827, 63 (1985)
  4. T. Tanio, T. Fukui, Y. Shirakura, T. Saito, K. Tomita, T. Kaiho, and S. Masamune, Eur. J. Biochem., 124, 71 (1982)
  5. K. Mukai, K. Yamada, and Y. Doi, Int. J. Biol. Macromol., 14, 235 (1992)
  6. G. Tomasi and M. Scandola, Macromolecules, 29, 507 (1996)
  7. R. J. Hocking, R. H. Marchessault, M. R. Timmins, R. W. Lenz, and R. H. Fuller, Macromolecules, 29, 2472 (1996)
  8. T. Iwata, Y. Doi, K. Kasuya, and Y. Inoue, Macromolecules, 30, 833 (1997)
  9. P. A. Holmes, Phys. Technol., 16, 32 (1985)
  10. Y. Doi, M. Kunioka, Y. Nakamura, and K. Soga, Macromolecules, 21, 2722 (1988)
  11. N. Koyama and Y. Doi, Polymer, 38, 1589 (1997)
  12. L. Finelli, M. Scandola, and P. Sadocco, Macromol. Chem. Phys., 199, 695 (1998)
  13. M. Maekawa, R. Pearce. R. H. Marchessault, and R. S. J. Manley, Polymer, 40, 1501 (1999)
  14. M. Motizuki, S. Murase, M. Inagaki, Y. Kanmuri, and K. Kudo, Sen -i Gakkaishi, 53, 348 (1997)
  15. C. W. Lee, Polymer(Korea), 31, 228 (2007)