• Title/Summary/Keyword: link beam

Search Result 177, Processing Time 0.023 seconds

Cyclic testing of chevron braced steel frames with IPE shear panels

  • Zahrai, Seyed Mehdi
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1167-1184
    • /
    • 2015
  • Despite considerable life casualty and financial loss resulting from past earthquakes, many existing steel buildings are still seismically vulnerable as they have no lateral resistance or at least need some sort of retrofitting. Passive control methods with decreasing seismic demand and increasing ductility reduce rate of vulnerability of structures against earthquakes. One of the most effective and practical passive control methods is to use a shear panel system working as a ductile fuse in the structure. The shear Panel System, SPS, is located vertically between apex of two chevron braces and the flange of the floor beam. Seismic energy is highly dissipated through shear yielding of shear panel web while other elements of the structure remain almost elastic. In this paper, lateral behavior and related benefits of this system with narrow-flange link beams is experimentally investigated in chevron braced simple steel frames. For this purpose, five specimens with IPE (narrow-flange I section) shear panels were examined. All of the specimens showed high ductility and dissipated almost all input energy imposed to the structure. For example, maximum SPS shear distortion of 0.128-0.156 rad, overall ductility of 5.3-7.2, response modification factor of 7.1-11.2, and finally maximum equivalent viscous damping ratio of 35.5-40.2% in the last loading cycle corresponding to an average damping ratio of 26.7-30.6% were obtained. It was also shown that the beam, columns and braces remained elastic as expected. Considering this fact, by just changing the probably damaged shear panel pieces after earthquake, the structure can still be continuously used as another benefit of this proposed retrofitting system without the need to change the floor beam.

Beam selection method for millimeter-wave-based uplink hybrid beamforming systems (밀리미터파 기반 상향링크 하이브리드 빔포밍 시스템을 위한 빔선택 방법)

  • Shin, Joon-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.818-823
    • /
    • 2016
  • Millimeter wave (mm-wave) communication systems provide high data rates owing to the large bandwidths available at mm-wave frequencies. Recently, analogue and digital combined beamforming, namely "hybrid beamforming" has drawn attentions owing to its ability to realize the required link margins in mm-wave systems. Taking into account the radio frequency (RF) hardware limitations, such as the analogue phase shifter gain constraint and the low resolution of the phase controller, we introduce an uplink hybrid beamforming system that includes discrete Fourier transform (DFT) based "fixed" analogue beamforming. We adopt a zero-forcing (ZF) multiple-input multiple-output (MIMO) equalizer to eliminate the uplink inter-user interferences. Moreover, to improve the sum-rate performances, we propose a transmit beam selection algorithm which makes the uplink effective channels, i.e., the beamformed channels, become near orthogonal. The effectiveness of the proposed beam selection algorithm was verified through numerical simulations.

Plastic Shear Hinges for the Seismic Design for Steel Building Structures (철골 건축구조물의 내진설계를 위한 소성 전단 힌지)

  • 이승준
    • Computational Structural Engineering
    • /
    • v.3 no.3
    • /
    • pp.25-29
    • /
    • 1990
  • 고층건축구조물의 내진설계에서는 강성, 강도와 연성사이의 균형이 적절하게 유지되어야 한다. 이 글은 철골고층건물의 대표적인 구조시스템인 모멘트 골조와 가새골조의 내진거동에 대한 이해를 넓히고자 최근 연구되어온 Panel Zone과 Link Beam의 거동에 대한 결과와 설계시 유의사항을 간략하게 소개하였다.

  • PDF

Spatial substructure hybrid simulation tests of high-strength steel composite Y-eccentrically braced frames

  • Li, Tengfei;Su, Mingzhou;Sui, Yan
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.715-732
    • /
    • 2020
  • High-strength steel composite Y-eccentrically braced frame (Y-HSS-EBF) is a novel structural system. In this study, the spatial substructure hybrid simulation test (SHST) method is used to further study the seismic performance of Y-HSS-EBF. Firstly, based on the cyclic loading tests of two single-story single-span Y-HSS-EBF planar specimens, a finite element model in OpenSees was verified to provide a reference for the numerical substructure analysis model for the later SHST. Then, the SHST was carried out on the OpenFresco test platform. A three-story spatial Y-HSS-EBF model was taken as the prototype, the top story was taken as the experimental substructure, and the remaining two stories were taken as the numerical substructure to be simulated in OpenSees. According to the test results, the validity of the SHST was verified, and the main seismic performance indexes of the SHST model were analyzed. The results show that, the SHST based on the OpenFresco platform has good stability and accuracy, and the results of the SHST agree well with the global numerical model of the structure. Under strong seismic action, the plastic deformation of Y-HSS-EBF mainly occurs in the shear link, and the beam, beam-columns and braces can basically remain in the elastic state, which is conducive to post-earthquake repair.

FE Analysis of RC Beams Strengthened with Carbon Fiber Sheet (탄소섬유쉬트로 보강된 RC 보의 유한요소해석)

  • 한상호;이경동
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.53-58
    • /
    • 2003
  • Carbon fiber sheet has been used to rehabilitate many types of reinforced concrete members with its superior characteristics such as their lightweight, high strength, corrosion resistance, and easy execution. But the failure behavior of reinforced concrete members show a high variation by the bond characteristics between carbon fiber sheet and concrete surface. In this study, a bond stress-slip model, which accounts for changes in bonding behavior between concrete and carbon fiber sheet with some link elements, is proposed. The link elements are used to represent the concrete-carbon fiber sheet interface. To investigate the efficiency of this method, the analytical solutions for the behavior of reinforced concrete beam strengthened with carbon fiber sheet are compared with experimental ones. Results from the proposed model comparatively well agree with the experimental results.

Sweet spot search of multi peak beam using Genetic Algorithm (Genetic Algorithm을 이용한 멀티 피크 빔의 최적방향탐색)

  • Hwang Jong Woo;Lim Sung Jin;Eom Ki Hwan;Sato Yoichi
    • Proceedings of the IEEK Conference
    • /
    • 2004.06a
    • /
    • pp.301-304
    • /
    • 2004
  • In this paper, we propose a method to find the optimal direction of the multi beam between each station on the point-to-point link by genetic algorithm. In the proposed method, maximum value in optimal direction on each station is used as a fitness function. The beam of millimeter wave generates a lot of multi-peak because of much influence of noise. About each gene, we simulated this method using 16bit, 32bit, and 32bit split algorithm. 32bit split uses 16bit gene information. Each antenna makes 32bit gene information by adding gene information of two antennas having 16bit gene. Through the proposed method, we could have gotten a good output without 32bit gene information.

  • PDF

Analysis of PSC Beam Bridges Strengthened by External Post-Tensioning Method (외부 후긴장된 PSC보 교량의 해석방법)

  • 김광수;박선규;김형열;전찬기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.399-404
    • /
    • 1999
  • An improved finite element modeling technique is proposed for the assessment of load carrying capacity partilly prestressed concrete beam bridges. Based on the finite element method of analysis, shell and frame elements are utilized to model the slab and beams of the superstructure, respectively. In the modeling of superstructure, the emphasis is placed on the use of rigid link between the middle surface of slab and mid-plane of beam. This paper also includes the comparision of three different equations that used in the calculation of effective moment of inertia for the partially prestressed concrete beams. Numerical analysis is performed for the unstrengthened and strengthened bridges. The obtained results are compared with those of load test for a prototype bridge. Agreement with the numerical solutions by using the proposed method and load test results is generally excellent.

  • PDF

Nonlinear Analysis of Beam Vibration with Impact (충격성분을 갖는 보의 진동에 대한 비선형 해석)

  • Lee, B.H.;Choi, Y.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.455-460
    • /
    • 2000
  • Impact occurs when the vibration amplitude of a mechanical component exceeds a given clearance size. Examples of these mechanical systems include impact dampers, gears, link mechanism, rotor rub, and so on. The vibration due to impact has strong non-linear characteristics, which cannot be predicted by usual linear analysis. The designs of mechanical systems with impacts should be done on the basis of overall dynamic characteristics of the systems. In this paper, the nonlinear behaviors of a beam with a periodically moving support and a rigid stop are investigated numerically and experimentally. The beam vibration with impact is modeled by the equations of motion containing piecewise linear restoring forces and by the coefficient of restitution, respectively. Experimental and numerical results show jump phenomena and higher-harmonic vibrations. The effects between the increase of stiffness during impact and the coefficient of restitution are investigated through the comparison of the experimental and numerical results.

  • PDF

RC beams retrofitted using external bars with additional anchorages-a finite element study

  • Vasudevan, G.;Kothandaraman, S.
    • Computers and Concrete
    • /
    • v.16 no.3
    • /
    • pp.415-428
    • /
    • 2015
  • Study on flexural retrofitting of RC beams using external bars with additional intermediate anchorages at soffit is reported in this paper. Effects of varying number of anchorages in the external bars at soffit were studied by finite element analysis using ANSYS 12.0 software. The results were also compared with available experimental results for beam with only two end anchorages. Two sets of reference and retrofitted beam specimens with two, three, four and five anchorages were analysed and the results are reported. FE modeling and non-linear analysis was carried out by discrete reinforcement modeling using Solid65, Solid45 and Link8 elements. Combin39 spring elements were used for modeling the frictional contact between the soffit and the external bars. The beam specimens were subjected to four-point bending and incremental loading was applied till failure. The entire process of modeling, application of incremental loading and generation of output in text and graphical format were carried out using ANSYS Parametric Design Language.

Evaluation of Structural Behavior of Precast-Concrete Column and H-Beam using Non-linear Finite Element Analysis (비선형 유한요소해석을 이용한 PC 기둥-H 형강보의 구조거동 분석)

  • Park Jeong-sim;Park Soon-kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.425-428
    • /
    • 2004
  • Nonlinear finite element analysis is conducted to predict the structural behavior of precast concrete column and steel beam connected by using bolted connections. The Nonlinear FEM program is based on the modified compression field theory which has good accuracy in the concrete structures. The link element is properly used to model the discontinuity between precast concrete column and steel beam. Predictions from the proposed model are compared with experimental results and it is concluded that structural behaviors of the composite structures, such as strength capacity, crack pattern and failure mode, can be predicted quite successfully.

  • PDF