• Title/Summary/Keyword: link beam

Search Result 177, Processing Time 0.03 seconds

Deterministic Nonlinear Control of Two-Link Flexible Arm (2관절 유연한 로봇 팔에 대한 비선형 제어)

  • Han, Jong-Kil;Son, Yong-Su
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.4 no.3
    • /
    • pp.236-242
    • /
    • 2009
  • When two-link flexible arm is rotated about an joint axis, transverse vibration may occur. In this paper, vibration dynamics of flexible robot arm is modeled by using Bernoulli-Euler beam theory and Lagrange equation. Using the fact that matrix $\dot{D}$-2C is skew symmetric, new controllers which have a simplified structure with less computational burden is proposed. Lyapunov stability theory is applied to achieve a stable deterministic nonlinear controller for the regulation of joint angle.

  • PDF

Estimation of Allowable Path-deviation Time in Free-space Optical Communication Links Using Various Aircraft Trajectories

  • Kim, Chul Han
    • Current Optics and Photonics
    • /
    • v.3 no.3
    • /
    • pp.210-214
    • /
    • 2019
  • The allowable path-deviation time of aircraft in a free-space optical communication system has been estimated from various trajectories, using different values of aircraft speeds and turn rates. We assumed the existence of a link between the aircraft and a ground base station. First, the transmitter beam's divergence angle was calculated through two different approaches, one based on a simple optical-link equation, and the other based on an attenuation coefficient. From the calculations, the discrepancy between the two approaches was negligible when the link distance was approximately 110 km, and was under 5% when the link distance ranged from 80 to 140 km. Subsequently, the allowable path-deviation time of the aircraft within the tracking-error tolerance of the system was estimated, using different aircraft speeds, turn rates, and link distances. The results indicated that the allowable path-deviation time was primarily determined by the aircraft's speed and turn rate. For example, the allowable path-deviation time was estimated to be ~3.5 s for an aircraft speed of 166.68 km/h, a turn rate of $90^{\circ}/min$, and a link distance of 100 km. Furthermore, for a constant aircraft speed and turn rate, the path-deviation time was observed to be almost unchanged when the link distance ranged from 80 to 140 km.

Seismic Performance of Shear Dominant Hybrid Steel Link Beam with Circular Web Opening (원형 개구부가 있는 전단지배 하이브리드 강재 연결보의 내진성능)

  • Lim, Woo-Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.30 no.1
    • /
    • pp.37-48
    • /
    • 2018
  • Cyclic loading tests for shear dominant hybrid steel link beams with circular web openings were performed to evaluate the seismic performance. Four half-scaled specimens with bolted connections were tested. The test parameter is a diameter of the web opening, i.e., shear strength ratio ($V_{pw}/V_p$) of the link beam and presence of top-seat angles. Using test results, adequate design shear strength of link beam was finally suggested. Test results showed that when the shear capacity is less than half of the plastic shear strength, seismic performance was improved due to mitigation of pinching under reversed cyclic inelastic deformations.

Finite element analysis for the seismic performance of steel frame-tube structures with replaceable shear links

  • Lian, Ming;Zhang, Hao;Cheng, Qianqian;Su, Mingzhou
    • Steel and Composite Structures
    • /
    • v.30 no.4
    • /
    • pp.365-382
    • /
    • 2019
  • In steel frame-tube structures (SFTSs) the application of flexural beam is not suitable for the beam with span-to-depth ratio lower than five because the plastic hinges at beam-ends can not be developed properly. This can lead to lower ductility and energy dissipation capacity of the SFTS. To address this problem, a replaceable shear link, acting as a ductile fuse at the mid length of deep beams, is proposed. SFTS with replaceable shear links (SFTS-RSLs) dissipate seismic energy through shear deformation of the link. In order to evaluate this proposal, buildings were designed to compare the seismic performance of SFTS-RSLs and SFTSs. Several sub-structures were selected from the design buildings and finite element models (FEMs) were established to study their hysteretic behavior. Static pushover and dynamic analyses were undertaken in comparing seismic performance of the FEMs for each building. The results indicated that the SFTS-RSL and SFTS had similar initial lateral stiffness. Compared with SFTS, SFTS-RSL had lower yield strength and maximum strength, but higher ductility and energy dissipation capacity. During earthquakes, SFTS-RSL had lower interstory drift, maximum base shear force and story shear force compared with the SFTS. Placing a shear link at the beam mid-span did not increase shear lag effects for the structure. The SFTS-RSL concentrates plasticity on the shear link. Other structural components remain elastic during seismic loading. It is expected that the SFTS-RSL will be a reliable dual resistant system. It offers the benefit of being able to repair the structure by replacing damaged shear links after earthquakes.

Impact of Temporary Link Blockage on Ergodic Capacity of FSO System

  • Petkovic, Milica I.;Djordjevic, Goran T.
    • ETRI Journal
    • /
    • v.40 no.3
    • /
    • pp.330-336
    • /
    • 2018
  • Free-space optical (FSO) systems have attracted much attention from both research and application perspectives owing to their many benefits, such as license-free operation, low-cost, and high data rates. This paper investigates the ergodic capacity of FSO systems, which is an important metric of system performance. The stochastic temporary laser-beam blockage, pointing errors, and atmospheric turbulence are simultaneously considered. The results illustrate that the link blockage causes a decreased ergodic capacity. We show that to maximize the ergodic capacity, there is an optimal value of the laser-beam radius at the waist, which largely depends on pointing errors; however, it is independent of the atmospheric turbulence and the probability of link blockage.

Numerical Study on the Link Range of the IM/DD Wireless Optical Communication at 830[nm] Optical Wavelength using Galilean Optics (갈릴리안 광학계를 사용한 IM/DD 광무선통신 시스템에서 830[nm] 광파장에 대한 전송거리 제한 해석)

  • Hong, Kwon-Eui;Ko, Sung-Won;Cho, Jung-Whan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.11
    • /
    • pp.123-129
    • /
    • 2011
  • In terrestrial wireless optical communication links, atmospheric effects including turbulence, absorption and scattering have significant impact on the system performance. Based on the analysis of transmission in atmospheric channel concerning 830[nm] wavelength diode laser beam, performance of free space optical (FSO) link utilizing Galilean optics as a laser beam transmitting and receving optics, PIN photodiode as a detecting device. In this paper we designed optical link equation for received optical power and we analyze the atmospheric effects on the signal to noise ratio (SNR) and bit error rate (BER) of an terrestrial FSO system. We show that the possible communication distance for BER=$10^{-9}$ in proposed adverse atmospheric conditions.

Development of Beam Rotating Actuator Based on Voice Coil Motor Type for Mulit-beam Optical Disc System (다중 빔 광디스크 시스템을 위한 자기 구동형 빔 회전 구동기의 개발)

  • Lee, Cheong-Hee;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.10
    • /
    • pp.83-88
    • /
    • 2000
  • multi-beam optical drive is a method to improve the data transfer rate for the optical disc systems by parallel recording and reading on neighboring multi-tracks. In this paper, the beam rotating actuator, which is necessary for the multi-bean optical disc drive to from beam spots on multi-tracks simultaneously, has been developed. The Voice Coil Motor is used as a drive mechanism for high resolution and small size of the actuator. And rotating guide based on link structure is designed for frictionless and axisless rotation of rotating part including dove prism and for rotating in axis of geometric center of dove prism. The characteristics of the actuator are experimented by laser vibrometer, Polytec OFV1102 and a dynamic analyzer, HP35670A. It shows that the actuator has good linearity, rotating range $\pm0.34^\circ$, minimum rotating angle $0.0066^\circ$and natural frequency 113.9Hz. Therefore the actuator can be applied in a multi-beam optical disc system.

  • PDF

A Study on the Modeling and Control of a Flexible One-Link Manipulator Moving in a Vertical Plane (수직면에서 회전운동 하는 단일 탄성링크를 가지는 매니퓰레이터의 모델링과 제어에 관한 연구)

  • Kim, Jongdae;Oh, Seokhyung;Kim, Kiho;Oh, Chaeyoun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.132-142
    • /
    • 1996
  • This paper presents a technique to model and control a manipulator which has a flexible link and moves in a vertical plane. The flexible link is modeled as an Euler-Bernoulli Beam. Elastic deformation of the flexible link is represented using the assumed modes method. A comparison function which satisfies all geometric and natural boundary conditions of a cantilever beam with an end mass is used as an assumed mode shape. Lagrange's equation is utilized for the development of a discretized model. This paper presents a simple technique to improve the correctness of the developed model. The final model including the shortening effect due to elastic deformation correlates very well with experimental results. The free body motion simulation shows that two assumed modes for the representation of the elastic deformation is proper in terms of the model size and correctness. A control algorithm is developed using PID control technique. The proportional, integral and derivative control gains are determined based on dominant pole placement method with a rigid one-link manipulator. A position control simulation shows that the control algorithm can be used to control the position and residual oscillation of the flexible one-link manipulator effectively.

  • PDF

Position control of two link flexible manipulator using Timoshenko beam model (Timoshenko beam 모델을 이용한 두개의 링크를 갖는 유연성 매니퓰레이터의 위치 제어)

  • 김기환;강경운;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.382-387
    • /
    • 1990
  • In this paper, the dynamic modeling and tip position of rotating Timoshenko beam analyzed by means of FEM (finite element method) and Hyperstability MRAC(model referenced adaptive control) technique of each other. The governing equations of the rotating beams are drived from Hamilton's principle. The dynamic model of this multi-link is drived by Lagrange approach. The shear deformation and rotary inertia are incorporated into a finite element model for determining the bending frequencies of the rotating beam. Simulation results for uniform cantilever beams by using the MRAC are compared with the available results. It will be shown that the proposed method offers an accurate and effective one to solve the free vibration problems of rotating beams' stability.

  • PDF

Shear Behavior of Steel Eccentric Link Subject to Seismic Loads (철골 보 접합부재의 지진전단거동에 관한 연구)

  • 손기상
    • Journal of the Korean Society of Safety
    • /
    • v.6 no.3
    • /
    • pp.35-39
    • /
    • 1991
  • Concentrically braced frames are limited in their ability to absorb energy during an earthquake However by placing the bracing members eccentric to the beam column joints, an energy absorbing link unit is produced. The energy is absorbed by the link and / or columns deforming inelastically. Three models of a multistorey structure were analyzed using DRAIN-2D computer program .Three link lengths were used in the analyses, 7, 11 and 15 inches. The yield patterns are produced. However it is interesting to note the relative valuses of force and moment obtained.

  • PDF