• Title/Summary/Keyword: link allocation

Search Result 205, Processing Time 0.023 seconds

The optimal bandwidth allocation in multiplexing Voice/nonvoice traffic (음성/비음성트래픽을 위한 최적 대역폭 설계에 관한 연구)

  • Kim, Jae-Yeol;Lee, Kwan-Ha
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.514-518
    • /
    • 1988
  • The switching system and transport will be developed and serve as hybrid switching system and link respectively according to the needs of mixed voice and data service in ISDN era. This paper describes a theory of optimal band width allocation in multiplexing voice and nonvoice traffic, and analyzes traffic performances on a model network.

  • PDF

Efficient Resource Allocation Schemes for Relay-based Cooperative Networks in 3GPP LTE-Advanced Systems (3GPP LTE-Advanced 시스템에서 릴레이 기반의 협력 네트워크를 위한 효율적인 자원할당 기법)

  • Kim, San-Hae;Yang, Mo-Chan;Lee, Je-Yeon;Shin, Yo-An
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.6A
    • /
    • pp.555-567
    • /
    • 2010
  • Unlike single-hop systems, multi-hop systems that use relay nodes assign a part of the overall resources to relay communications. If efficient resource allocation schemes are not adopted, this leads to a loss of resources. Moreover, because we may not be able to guarantee high-link performance due to the adjacent-cell interference in relay-based cellular systems, resource efficiency can be severely decreased. In this paper, we propose efficient resource allocation schemes for downlink relay-based networks in 3GPP (3rd Generation Partnership Project) LTE (Long Term Evolution)-Advanced systems. Unlike conventional schemes that have static resource regions for each data link, the proposed schemes dynamically allocate the resources of each link to resource blocks, by considering the channel state and the capacity of each link. We also propose resource overlapping schemes in which two different links overlap at the same resource region, so as to improve cell or user throughput performance. The proposed resource overlapping schemes do not require additional processes such as interference cancellation in users, thank to considering additional interference from resource overlapping in advance.

Improving Efficiency of Timeslot Assignment for Non-realtime Data in a DVB-RCS Return Link: Modeling and Algorithm

  • Lee, Ki-Dong;Cho, Yong-Hoon;Lee, Ho-Jin;Oh, Deock-Gil
    • ETRI Journal
    • /
    • v.25 no.4
    • /
    • pp.211-218
    • /
    • 2003
  • This paper presents a dynamic resource allocation algorithm with multi-frequency time-division multiple access for the return link of interactive satellite multimedia networks such as digital video broadcasting return channel via satellite systems. The proposed timeslot assignment algorithm, called the very efficient dynamic timeslot assignment (VEDTA) algorithm, gives an optimal assignment plan within a very short period. The optimality and computational efficiency of this algorithm demonstrate that it will be useful in field applications.

  • PDF

Orthogonal Frequency Division Multiple Access with Statistical Channel Quality Measurements Part-I: System and Channel Modeling (통계적 채널 Quality 정보를 이용한 직교 주파수분할 다중접속(OFDMA) Part-I: 시스템 및 채널 모델링)

  • Yoon, Seo-Khyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2A
    • /
    • pp.119-127
    • /
    • 2006
  • In this two-part paper, we consider dynamic resource allocation in orthogonal frequency division multiple access(OFDMA). To reduce the reverse link overhead for channel quality information(CQI) feedback, a set of sub-carriers are tied up to a sub-channel to be used as the unit of CQI feedback, user-multiplexing and the corresponding power/rate allocation. Specifically, we focus on two sub-channel structures, either aggregated or distributed, where the SNR distribution over a sub-channel is modeled as Ricean in general, and the channel quality of a sub-channel is summarized as the mean and variance of channel gain envelop divided by noise standard deviation. Then, we develop a generalized two step channel/resource allocation algorithm, which uses the two statistical measurements, and analyze the spectral efficiency of the OFDMA system in terms of average frequency utilization. An extension to proportional fair algorithm will also be addressed. As confirmed by numerical results, the aggregated structure is preferred especially when intending aggressive link adaptation.

A Device-to-device Sharing-Resource Allocation Scheme based on Adaptive Group-wise Subset Reuse in OFDMA Cellular Network (OFDMA 셀룰러 네트워크에서 적응적인 Group-wise Subset Reuse 기반 Device-to-device 공유 자원 할당 기법)

  • Kim, Ji-Eun;Kim, Nak-Myeong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.7
    • /
    • pp.72-79
    • /
    • 2010
  • Device-to-device(D2D) links which share resources in a cellular network present a challenge in radio resource management due to the potentially severe interference they may cause to the cellular network. In this paper, a resource allocation scheme based on subset reuse methods is proposed to minimize the interference from the D2D links. We consider an adaptive group-wise subset reuse method to enhance the efficiency of frequency resource allocation for cellular and D2D links. A power optimization scheme is also proposed for D2D links if cellular links are interfered by adjacent D2D transmissions. The computer simulation results show that performance gain is obtained in link SINR, and total cell throughput increases as nearby traffic becomes more dominant.

Beamforming Training for Asymmetric Links in IEEE 802.11ay: Implementation and Performance Evaluation

  • Kim, Yena
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.11
    • /
    • pp.89-95
    • /
    • 2020
  • In this paper, we present Beamforming (BF) Training (BFT) for asymmetric links in IEEE 802.11ay. IEEE 802.11ay introduced BFT for asymmetric links that aims to increase the BFT success probability for Station (STA) with insufficient link budget to communicate with an Access Point (AP). BFT for asymmetric links utilizes directional BFT allocation to avoid the usage of quasi-omni pattern at the AP side, and thus to increase STA's BFT success rate. However, there are no publicly available simulation tools supporting IEEE 802.11ay. For these reasons, we present in this paper an implementation of BFT for asymmetric links in ns-3 with its novel techniques such as Training RX (TRN-R) subfield and BFT allocation. We then evaluate by simulation the performance of BFT for asymmetric links.

Grouping Resource Allocation Scheme for D2D Communications (D2D 통신을 위한 그룹핑 자원 할당 기법)

  • Kim, Hyang-mi;Lee, Han-na;Kim, Sangkyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.8
    • /
    • pp.1532-1541
    • /
    • 2015
  • D2D(Device-to-Device) communication is a promising technology to improve the system capacity and spectral efficiency. By sharing the same radio resources with cellular user equipments, D2D communications can significantly enhance the overall spectral efficiency. However, it may cause interference between D2D link and cellular link. So, careful resource allocation and interference coordination between them are very important and need to be properly handled. This paper proposes a radio resource allocation scheme that decreases interference through the use of area grouping and D2D pair grouping. Simulations results are provided to verify the performance improvement of the proposed scheme in terms of the number of assigned resource blocks and computational complexity.

Resource Allocation Based on Location Information in D2D Cellular Networks (D2D 셀룰러 네트워크에서 위치기반 자원할당)

  • Kang, Soo-Hyeong;Seo, Bang-Won;Kim, Jeong-Gon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.750-757
    • /
    • 2017
  • Recently, mobile internet traffic has rapidly increased as the huge increase of the smart phone and mobile devices. D2D get attention, because D2D is known that it reduce the traffic load of the base station and also improves the reliability of the network performance. However, D2D has a problem that the efficiency decreases as interference is increased. In this paper, we propose a resource allocation scheme to use the resources efficiently when the D2D link share the cellular resources in the cellular network based the uplink. D2D communication utilizes the location information for allocating resources when the eNB know the location of all devices. The proposed scheme select some cellular user using location informations in order to ensure performance of the D2D communication. and D2D link choose cellular user that performs resource allocation using only selected cellular user. Simulation results show optimal value of resource selection in order to ensure most performance of the D2D communication.

Interference Aware Downlink Channel Allocation Algorithm to Improve Throughput on OFDMA Cellular Multihop Networks with Random Topology (임의의 토폴로지를 갖는 OFDMA 다중홉 셀룰러 네트워크의 하향링크 간섭 완화를 위한 채널 할당 방법)

  • Lim, Sunggook;Lee, Jaiyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.43-51
    • /
    • 2015
  • Upcoming cellular networks such as LTE-advanced and IEEE 802.16m are enhanced by relay stations to support high data rate multimedia services and minimize the shadow zone with low cost. Enhancing the relay stations, however, divides the multihop cellular network into smaller microcells and the distance between microcells is closer, which intends large intra-cell and inter-cell interference. Especially the access link on downlink in the OFDMA cellular network is the throughput bottleneck due to the severe interference caused by base stations and relay stations transmitting large data to mobile stations simultaneously. In this paper, we present interference aware channel allocation algorithm to avoid severe interference on multihop cellular networks with random topology. Proposed algorithm increases SINR(signal to interference plus noise ratio) and decreases number of required control messages for channel allocation, so that increases overall throughput on the networks.

An Efficient Resource Allocation Scheme For An Integrated Satellite/Terrestrial Networks (위성/지상 겸용 망 내 간섭을 고려한 최적 자원 할당 방식)

  • Park, Unhee;Kim, Hee Wook;Oh, Dae-Sub;Jang, Dae-Ik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.2
    • /
    • pp.298-306
    • /
    • 2015
  • In this paper, we propose an efficient resource allocation scheme for the integrated satellite/terrestrial networks. The proposed scheme is a frequency sharing technique to mitigate the inter-component interferences which can be generated between a satellite beam and terrestrial cells that are operated in the same frequency. The proposed dynamic resource allocation scheme can mitigate the total inter-component interference by optimizing the total transmission power and it can expect a result of which can lead to an increase in capacity. In such a system, the interference situation can be affected by the distributed traffic demands or up/down link communications environments. In this point of view, we evaluate the performance of the total consumed power, the amount of inter-component interference with respect to different traffic distributions and interference environments between the satellite beam and terrestrial systems.