• Title/Summary/Keyword: lining model

Search Result 207, Processing Time 0.024 seconds

Dynamic response and waterproof property of tunnel segmental lining subjected to earthquake action

  • Yan, Qixiang;Bao, Rui;Chen, Hang;Li, Binjia;Chen, Wenyu;Dai, Yongwen;Zhou, Hongyuan
    • Earthquakes and Structures
    • /
    • v.17 no.4
    • /
    • pp.411-424
    • /
    • 2019
  • In this study, a numerical model of a shield tunnel with an assembled segmental lining was built. The seismic response of the segmental lining of the section of the shield tunnel in Line 1 of the Chengdu Metro is analyzed as it passes through the interface of sand-cobble and mudstone layers. To do so, the node-stress seismic-motion input method was used to input the seismic motion measured during the 2008 Wenchuan earthquake, and the joint openings and dislocations associated with the earthquake action were obtained. With reference to the Ethylene-Propylene-Diene Monomer (EPDM) sealing gaskets used in the shield tunnels in the Chengdu Metro, numerical simulation was applied to analyze the contact pressure along the seepage paths and the waterproof property under different joint openings and dislocations. A laboratory test on the elastic sealing gasket was also conducted to study its waterproof property. The test results accord well with the numerical results and the occurrence of water seepage in the section of the shield tunnel in Line 1 of the Chengdu Metro during the 2008 Wenchuan earthquake was verified. These research results demonstrate the deformation of segmental joint under earthquake, also demonstrate the relationship between segmental joint deformation and waterproof property.

Dynamic response of segment lining due to train-induced vibration (세그먼트 라이닝의 열차 진동하중에 대한 동적 응답특성)

  • Gyeong-Ju Yi;Ki-Il Song
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.4
    • /
    • pp.305-330
    • /
    • 2023
  • Unlike NATM tunnels, Shield TBM tunnels have split linings. Therefore, the stress distribution of the lining is different even if the lining is under the same load. Representative methods for analyzing the stress generated in lining in Shield TBM tunnels include Non-joint Mode that does not consider connections and a 2-ring beam-spring model that considers ring-to-ring joints and segment connections. This study is an analysis method by Break-joint Mode. However, we do not consider the structural role of segment lining connections. The effectiveness of the modeling is verified by analyzing behavioral characteristics against vibration loads by modeling with segment connection interfaces to which vertical stiffness and shear stiffness, which are friction components, are applied. Unlike the Non-joint mode, where the greatest stress occurs on the crown for static loads such as earth pressure, the stress distribution caused by contact between segment lining and friction stiffness produced the smallest stress in the crown key segment where segment connections were concentrated. The stress distribution was clearly distinguished based on segment connections. The results of static analysis by earth pressure, etc., produced up to seven times the stress generated in Non-joint mode compared to the stress generated by Break-joint Mode. This result is consistent with the stress distribution pattern of the 2-ring beam-spring model. However, as for the stress value for the train vibration load, the stress of Break-joint Mode was greater than that of Non-joint mode. This is a different result from the static mechanics concept that a segment ring consisting of a combination of short members is integrated in the circumferential direction, resulting in a smaller stress than Non-joint mode with a relatively longer member length.

Effect of spatial variability of concrete materials on the uncertain thermodynamic properties of shaft lining structure

  • Wang, Tao;Li, Shuai;Pei, Xiangjun;Yang, Yafan;Zhu, Bin;Zhou, Guoqing
    • Structural Engineering and Mechanics
    • /
    • v.81 no.2
    • /
    • pp.205-217
    • /
    • 2022
  • The thermodynamic properties of shaft lining concrete (SLC) are important evidence for the design and construction, and the spatial variability of concrete materials can directly affect the stochastic thermal analysis of the concrete structures. In this work, an array of field experiments of the concrete materials are carried out, and the statistical characteristics of thermophysical parameters of SLC are obtained. The coefficient of variation (COV) and scale of fluctuation (SOF) of uncertain thermophysical parameters are estimated. A three-dimensional (3-D) stochastic thermal model of concrete materials with heat conduction and hydration heat is proposed, and the uncertain thermodynamic properties of SLC are computed by the self-compiled program. Model validation with the experimental and numerical temperatures is also presented. According to the relationship between autocorrelation functions distance (ACD) and SOF for the five theoretical autocorrelation functions (ACFs), the effects of the ACF, COV and ACD of concrete materials on the uncertain thermodynamic properties of SLC are analyzed. The results show that the spatial variability of concrete materials is subsistent. The average temperatures and standard deviation (SD) of inner SLC are the lowest while the outer SLC is the highest. The effects of five 3-D ACFs of concrete materials on uncertain thermodynamic properties of SLC are insignificant. The larger the COV of concrete materials is, the larger the SD of SLC will be. On the contrary, the longer the ACD of concrete materials is, the smaller the SD of SLC will be. The SD of temperature of SLC increases first and then decreases. This study can provide a reliable reference for the thermodynamic properties of SLC considering spatial variability of concrete materials.

Numerical Method for Transient Pressure on Canals (개수로(開水路)에 작용(作用)하는 부정압력(不定壓力)에 관한 수치모형(數値模型))

  • Lee, Kil Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.2
    • /
    • pp.35-43
    • /
    • 1984
  • The purpose of this paper is to develop a mathematical model which can be used to compute the position of the free surface due to water level fluctuations in the canal and the transient pressure distributions along the canal lining. The diagnostic equation has been solved by the point successive over-relaxation method, and the linearized prognostic equation has been solved by the implicit Lax-Wendroff scheme. Four different cases in the simulation conditions are presented for both permeable and impermeable canal lining to predict the transient seepage surface development.

  • PDF

Groundwater Flow model of Drawdown and Recovery Due to Watertight Tunnel Excavation and Design Example for Lining (터널시공에 따른 지하수위 변화의 모델링과 이를 고려한 완전방수 터널의 라이닝 설계 예)

  • 남기천;이형원;배정식;나경웅
    • Tunnel and Underground Space
    • /
    • v.4 no.1
    • /
    • pp.24-30
    • /
    • 1994
  • Although a dry-system tunnel is not good for reasons fo economy and construction, it has been applied to some tunnels under construction owing to the advantages of good long-term maintenance of tunnel, prevention of consolidation settlement due to the drawdown of groundwater, preservation of the ecosystem, cutailment of operation cost, and so on. The stability of groundwater and the change of the applied water pressure after water proofing were analysed by the finite element method. Using this result, an example of designing the secondary lining for the dry-system tunnel which is to be constructed in low-permeability hard rock was presented.

  • PDF

Case Studies of Safety Diagnosis by GPR (GPR에 의한 안전진단 사례)

  • 한자경;최광철
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.12a
    • /
    • pp.169-180
    • /
    • 1999
  • Ground penetrating radar(GPR) uses radio waves to detect buried objects in any non-metallic material. Initially it was used to detect structures in ice. GPR has evolved to include the penetration of soils, rocks and man-made structures. GPR uses a sensitive detector to record weak radio waves reflected from objects embedded in the material under investigation. In this study, the GPR is applied to outside plant telecommunication facilities such as cable tunnels, manholes and underground conduits and model experiments to obtain radar characteristics. The thickness and soundness of tunnel lining can be evaluated, and the location of rebars and steel ribs can also be found effectively. The location of underground conduits as well as manholes can be found and the results of GPR give good coincidence with design drawings. In order to investigate the tunnel lining, the GPR mounted vehicle is developed and it is proved that the vehicle can save time and manpower.

  • PDF

A Study of Structural Safety Diagnosis using Frequency Domain Analysis of Impact-Echo Method (충격반향기법의 주파수영역 해석을 이용한 구조물 안전진단에 관한 연구)

  • 안제훈;서백수
    • Tunnel and Underground Space
    • /
    • v.14 no.1
    • /
    • pp.35-42
    • /
    • 2004
  • Impact-echo is a method for non-destructive testing of concrete structure. This method is based on the use of impact-generated stress wave which is propagated and reflected from internal flaws within concrete structure and external surface. In this study, we performed non-destructive testing using impact-echo methods for safety diagnosis of civil engineering and building structures. There are testing cases for the three models having one-dimensional form ; The first case is the measurement of thickness change of the model, the second is the detection of cavity in the model, and the third is the predictions of the lining thickness and the position of the cavity under tunnel lining condition.

A Study on Squeal Noise Simulation considering the Friction Material Property Changes according to Temperature and Pressure in an Automotive Brake Corner Module (차량용 브레이크 코너 모듈에서 마찰재의 온도와 압력에 따른 물성치 변화를 고려한 스퀼 소음 해석 연구)

  • Cho, Hojoon;Kim, Jeong-Tae;Chae, Ho-Joong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.546-552
    • /
    • 2012
  • This paper is a study on squeal noise simulation under the consideration of temperature and pressure dependent material properties of friction material. For this, data of pressure and temperature dependent material properties of lining is achieved by using lining data base and exponential curve fit. Complex eigenvalue analysis is performed for predicting squeal noise frequency and instability and chassis dynamo test is performed for achieving squeal noise frequency, sound pressure level, occurrence temperature & pressure. Initial multi models are composed for considering complex interface conditions such as pad ear-clip, piston-housing and guide pin-torque member. The simulation result of base models is compared with the test result. Squeal noise simulation under the consideration of temperature and pressure dependent material properties of friction material is performed and analyzed using multi models. And additional condition is disc material property variation. Entire simulation conditions are combined and analyzed. Finally, this paper proposes direction of the warm squeal noise model.

  • PDF

Theoretical analysis of erosion degradation and safety assessment of submarine shield tunnel segment based on ion erosion

  • Xiaohan Zhou;Yangyang Yang;Zhongping Yang;Sijin Liu;Hao Wang;Weifeng Zhou
    • Geomechanics and Engineering
    • /
    • v.37 no.6
    • /
    • pp.599-614
    • /
    • 2024
  • To evaluate the safety status of deteriorated segments in a submarine shield tunnel during its service life, a seepage model was established based on a cross-sea shield tunnel project. This model was used to study the migration patterns of erosive ions within the shield segments. Based on these laws, the degree of deterioration of the segments was determined. Using the derived analytical solution, the internal forces within the segments were calculated. Lastly, by applying the formula for calculating safety factors, the variation trends in the safety factors of segments with different degrees of deterioration were obtained. The findings demonstrate that corrosive seawater presents the evolution characteristics of continuous seepage from the outside to the inside of the tunnel. The nearby seepage field shows locally concentrated characteristics when there is leakage at the joint, which causes the seepage field's depth and scope to significantly increase. The chlorine ion content decreases gradually with the increase of the distance from the outer surface of the tunnel. The penetration of erosion ions in the segment is facilitated by the presence of water pressure. The ion content of the entire ring segment lining structure is related in the following order: vault < haunch < springing. The difference in the segment's rate of increase in chlorine ion content decreases as service time increases. Based on the analytical solution calculation, the segment's safety factor drops more when the joint leaks than when its intact, and the change rate between the two states exhibits a general downward trend. The safety factor shows a similar change rule at different water depths and continuously decreases at the same segment position as the water depth increases. The three phases of "sudden drop-rise-stability" are represented by a "spoon-shaped" change rule on the safety factor's change curve. The issue of the poor applicability of indicators in earlier studies is resolved by the analytical solution, which only requires determining the loss degree of the segment lining's effective bearing thickness to calculate the safety factor of any cross-section of the shield tunnel. The analytical solution's computation results, however, have some safety margins and are cautious. The process of establishing the evaluation model indicates that the secondary lining made of molded concrete can also have its safety status assessed using the analytical solution. It is very important for the safe operation of the tunnel and the safety of people's property and has a wide range of applications.

Development of beam-spring model to analyse the stability of double-deck tunnel (복층터널 안정성 분석을 위한 빔-스프링 모델 개발)

  • Lee, Sang-Hyun;An, Joon-Sang;Kang, Kyung-Nam;Kim, Byung-Chan;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.301-317
    • /
    • 2017
  • In this study, as an initial study for development of stability analysis program of a double-deck tunnel during life cycle, a structural analysis solver based beam-spring model for the double-deck tunnel is constructed. Effect of parameters(slab supporting type, depth of the tunnel and ground elastic modulus) is analyzed with the beam-spring model. The model is also compared and verified by commercial structural analysis program. It is considered that the slab supporting type affects the integrated behavior with segment lining and influence of intermediate slab on the stability of the tunnel decreases as the tunnel depth increases. The relationship between the ground elastic modulus and the effect of the intermediate slab on the segment lining needs further investigation.