The Dongmakgol Tuff is a stratigraphic unit which is composed of voluminous ignimbrites in the Cheolwon basin. The ignimbrites belong to pumice-rich vitric tuffs that show eutaxitic to parataxitic fabrics from fiamme or pumice clasts. They are almost densely welded and strongly flattened, but often parallel aligned and stretched. Also they exhibit flow indicators such as flow lineations, imbrications, tensional cracks and boudins from their alignment and/or elongation, and lithic and pumice clasts show lateral grading in their average maximum diameter. Flow direction map from the lineations, asymmetric structures and lateral grading diagram indicate that the Dongmakgol Tuff has a source from its southwestern part near a boundary between southern Dongmakri and northern Gomunri, and is considered that the ignimbrites took emplacement processes of laminar flows during the final stage of flowage and the flow lineations are from the result of shear stress during that times.
The Naeyeonsan Tuff is a stratigraphic unit which is distinguished as a cooling unit in the volcanic rocks of the northern Pohang. The Naeyeonsan Tuff, which is composed of crystals of plagioclase, quartz and hornblende, glasses of pumice and shard, and lithics of dacite, rhyolite, sandstone and shale, belongs to a lapilli tuff field according to the granulometric classification and to a vitric tuff field according to the constituent classification. The tuffs mostly develop welding foliations by dense welding and flatterning pumices and shards, and show several flow indicators by pyroclastic flowing. We can know a movement pattern from flow lineations and imbrications by pumices and lithics, and lateral gradings in isopleth map by average largest lithics and pumices in the Naeyeonsan Tuff, which indicate that the Naeyeonsan Tuff had a possible source area from the southeastern part.
It is very important in designing civil engineering structures that the quantification of geological informations must be carried out in terms of importance. In this study, the geological informations are quantified and evaluated using analytic hierarchy process (AHP). A professional group was organized with 30 people in the field of civil engineering, transport, and geology. On the assumption that the civil engineering structure is linear such as highway or railroad, a survey of the group in terms of geological and hydro-geological elements has found that the hierarchy structure is composed of four levels. And fault structure is a primary factor which causes the stability of a linear civil engineering structure. The importance of geological items are arranged with fault (0.456), foliation/bedding plane(0.l65), lineation(0.144), ground water(0.124), and rock type(0.111).
Talc deposit of pipe-like form occurrs in the lower part of the Hyangsanri Dolomite with a strike of N40 -50 E and a dip of 40 -50 NW which is one formation of the Ogcheon Super Croup. The pipi-like ore body plunge at about $40^{\circ}$ to the west and are parallel to the lineation developed in the area. Structural formulae of tales occurred in this deposit are close to the ieal composition $Mg_6Si_8O_{20}(OH)_4$ showing limited deviation from ideal one. Substitution of Al for Si in tetrahedral site is of little or nothing ranging 0-0.04 and octahedral occupancy is close to six ranging 5.88-5.98 atoms per unit cell. Predominant octahedaral cation is Mg and proportion of divalent cations is generally over 97percent. Calcite -dolomite thermometry is obtained by determining the mol % $MgCO_3$using of EPMA and XRD methods. The peak metamorphic temperature can be estimated at $470{\pm}30^{\circ}C$ in the area whereas carbonates occurred at near talc ore show lower temperature than $400^{\circ}C$ that the calcite solvus limit is not well established. It indicates that the talc deposit was formed at the lower temperature that the metamorphic temperature. Cosequently, the formation of talc by metamorphism is questionable and the alteratin zone developed around the talc ore is very limited. The occurrence of talc ore in the dolomite as well as mineralogy, calcite-dolomite geothermometry, chlorite geothermometry, field and microscopic evidence suggest that siliceous ascending hydrothermal solution along the fracture is responsible for the formation of talc. It was considered that the slight fracturing of dolomite was formed by deformation prior to the mineralization.
Pythagolas rule was used for investigation of static contact angle in particular figures. Static contact angle measurement was important to evaluate the wettability between solid and liquid. Optimum measurement method and standardization of calculation for static contact angle were investigated for practical application. Optimum diameter of droplet for static contact angle measurement was confirmed as 1 mm. Contact angle measurement using Pythagolas rule was also used to calculate advancing, receding angle and wettability of different surface condition. At last, it was concluded that the Pythagolas rule method was more accurate than general lineation method for static contact angle measurement.
Located in the eastern part of the Anti-Atlas, the Tafilalet region shows numerous dykes and sills that crosscut the Paleozoic terrains. The magmatic structures (dykes and sills) of the Tadaout-Tizi n'Rsas (TTR) anticline is studied here, it located neighboring the main branch of the Anti-Atlas Major Fault (AAMF), known in this location as the Oumejrane-Taouz Fault (OJTF). The N20° to N60° trending dykes crosscut the Paleozoic formations (Ordovician to Devonian), whereas sills are injected into the Silurian and Devonian ones. The dyke swarms of TTR have been studied using the Anisotropy of Magnetic Susceptibility (AMS), petrographic study and structural analyses. The petrographic study of the TTR doleritic dykes shows a dominance of plagioclase feldspars, alkali feldspars, amphiboles, pyroxenes and biotite. The dykes contain also mesotype (natrolite), sphene (titanite), apatite, actinolite and pegmatitic enclaves of biotite, orthoclase feldspars and pelites. Concerning field works, they show the deformation of TTR dykes by the Variscan tectonics events, it is marked by the presence of displacements (strike-slip faults) and cleavages. The Magnetic Susceptibility (MS) measured on magmatic specimens show the dominance of ferromagnetic and paramagnetic minerals. The high values of MS in the dykes are due to the presence of hematite, amphibole, pyroxene and biotite. In addition their magnetic fabric, determined by our AMS study, allows us to reconstitute the tectonic event which affected the magmatic bodies. This one is characterized by a magnetic foliation and a NNW-trending lineation that reflect the Variscan shortening orientation.
The Janggunbong area(this study area) at the central-south part in the North Sobaegsan Massif, Korea, consists mainly of Precambrian(Wonnam and Yulri Formations)-Paleozoic [Joseon Supergroup(Jangsan Quarzite, Dueumri Formation and Janggum Limestone) and Pyeongan Group(Jaesan and Dongsugok Formations)] metasedimentary rocks and Mesozoic granitoid(Chunyang granite.) This study is to interpret geological structure of the North Sobaegsan Massif in the Jang-gunbong area by analysing rock-structure and microstructure of the constituent rocks. It indicates that its geological structure was formed at least by four phases of deformation after the formation of gneissosity(S0) in the Wonnam Formation and bedding plane(S0) in the Paleozoic metasedimentary rocks. The first phase deformation(D1) formed tight isoclinal fold(F1). Its axial plane(S1) strikes east-west and steeply dips north. Its axis (L1) subhorizontally plunges east-west. The second phase deformation(D2), which was related to ductile shear deformation, formed stretching lineation(L2) and shear foliation(S2). The sense of the shear movement indicates dextral strike-slip shearing(top-to-the east shearing). The third phase deformation(D3) formed open inclined fold(F3). Its axial plane(S3) strikes east-west and moderately or gently dips north. Its axis(L3) subhorizontally plunges east-west. The F3 fold reoriented the original north-dipping S1 foliation and D2 shear sense into south-dipping S1 foliation(top-to-the west shear sense on this foliation) at its a limb. The four phase of deformation(D4) formed asymmetric-type open inclined fold(F4) of NE-vergence with NW striking axial plane(S4) and NW-NNW plunging axis(L4). The F4 fold partly reoriented pre-D4 structural elements with east-west trend into those with north-south trend. Such reorientation is recognized mainly in the Paleozoic metasedimentary rocks.
Kim, Sung-Wook;Choi, Eun-Kyeong;Jung, Yeon-Kyu;Kim, In-Soo
Economic and Environmental Geology
/
v.30
no.6
/
pp.613-624
/
1997
A study of anisotropy of magnetic susceptibility (AMS) was conducted on the Ordovician-Eocene strata in the Taebaek area. The study area is a northeastern part of the Okchon belt, sometimes called as Paegunsan Synclinal Area. A total of 600 independently oriented samples were collected from 60 sites covering the whole area. With a few exception of late Cretaceous-Eocene volcanic rocks, all the sampled strata are nonmetamorphosed sedimentary rocks, mainly sandstones. Among the 60 sites, 5 sites showed flow lineation lying on the bedding plane, 11 sites showed load foliation parallel to the bedding plane, and 21 sites showed tectonic foliation unrelated to the bedding plane. The tectonic foliations are defined by $k_1-k_2$ ($k_{max}-k_{int}$) anisotropy plane, and are considered as a result of tectonic forces acted perpendicularly to the foliation plane in the geologic past. Regardless of sample-site locations, tectonic force directions defined by $k_3$ ($k_{min}$) axis perpendicular to the tectonic foliation are consistent among the strata of the same geologic age. In the course of geologic time, however, the tectonic force directions showed a clockwise rotation: approximately E-W in the Ordovician sites, NW-SE in the Permian sites, N-S in the Triassic sites, and lastly NE-SW in the late Cretaceous-Eocene sites. The pre-Permian directions showed better clustering in the in-situ (geographic) coordinates, while the younger directions become better clustered after the bedding-tilt correction. It is interpreted that the major tectonic structures of the Taebaek area were controlled by the above-mentioned tectonic forces: The Paegunsan Syncline and the Hambaeksan Fault must have been generated by the NW-SE force of late Permian-early Triassic time. It was then reactivated in the reverse (dextral) sense by the N-S force of Triassic time. The Osipchon Fault in the eastern part of the study area was either generated or reactivated by the NE-SW force of late Cretaceous-Eocene time. The Permo-Triassic NW-SE force should be an expression of the Songnim Disturbance in the Korean peninsula, which is in turn related with the SCB/NCB collision in China.
The seismic properties in the crust are affected by the lattice preferred orientation(LPO) of major minerals in the crust. Therefore, in order to understand the internal structure of the crust using seismic data, information on the LPO of the major constituent minerals and the seismic properties of major rocks in a specific region are needed. However, there is little research on the LPOs of minerals in the crust in Korea. In this study, we collected amphibolites from two outcrops in Wigokri, Gapyeong, located in the nothern portion of Gyeonggi Massif, and we measured the LPOs of major minerals of amphibolite, especially amphibole and plagioclase through EBSD analysis, and calculated seismic properties of amphibolite. Two types of LPOs of amphibole, which are defined as type I and type IV, were observed in the two outcrops of Gapyeong amphibolites, respectively. In the case of amphibolites with the type I LPO of amphibole, large seismic anisotropy of both P- and S-wave was observed, while in the amphibolites with the type IV LPO of amphibole, small seismic anisotropy was observed. This is consistent with previous experimental results. The polarization direction of the fast S-wave was aligned subparallel to the lineation regardless of the LPO types of amphibole. The seismic anisotropy observed in Gapyeong is expected to be helpful to interpret the structure and seismic data within the crust in Gyeonggi Massif.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.