• Title/Summary/Keyword: lineation

Search Result 46, Processing Time 0.02 seconds

Age Dating of Seafloor by Interpretation of Geomagnetic Structure and Study on the Magnetic Basement of the Sea Mount (지자기 구조해석에 의한 해저년대의 측정과 해산의 자기기기반구조의 연구)

  • 신기철;한건모
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.35-42
    • /
    • 1990
  • The area where age dating of the seafloor and interpretation of geomagnetic basic structure are conducted is also important in the aspect of geophysics. Near the sea mount (water depth to the top is 3900m and 6500m to the bottom), there are Mesozoic magnetic lineations at the sea-side flank along the trench axis. A two dimensional model analysis of Talwani and Heirtzler(1964) and a three dimensional model analysis of Talwani are performed by using data obtained from the marine proton magnetometer. Distribution, direction of the lineation, amplitude and period of magnetic anomaly are correlated and analysed with speed of the plate movement and lineation of the sea mount. In the west and north-west Pacific there are lots of huge sea mounts retaining the history of oceanic crust. This indicates that geomagnetic basis subsided into the oceanic crust and has interest in the aspects of the isostasy theory of the gravity.

  • PDF

On the Origin of Anorthosite in the Area of Hadong, Sancheong, Gyeongsang-namdo, Korea (하동일산청지역(河東一山淸地域)의 아노르도사이트의 성인(成因)에 관(關)하여)

  • Son, Chi Moo;Cheong, Ji Gon
    • Economic and Environmental Geology
    • /
    • v.5 no.1
    • /
    • pp.1-20
    • /
    • 1972
  • A large anorthositic mass outcropped as mushroom-like body extending up to 46km which occurs in the Hadong kaoline district of southern Korea. The anorthositic mass is in contact with the metamorphic, plutonic and sedimentary rocks. The metamorphic rocks are of granitic gneiss and banded gneiss, etc; the plutonic rocks are of gabbroic and dioritic rocks, schistose granite, syenite, diorite and granite. The sedimentary rocks include siltstone and pebbly sandstone of Lower Gyeongsang System, Cretaceous in age. The anorthositic mass shows a gradational contact with the metamorphic and sedimentary rocks, and is cut by the plutonic rocks except gabbroic and dioritic rocks. The anorthositic mass is leucocratic in the central portion of the mass, and, in turn, grades to rock phases in which ma/ic minerals are irregularly scattered, then to the well-lineated rock and finally to the banded gneiss. Lineation of the anorthositic mass is accordant with that of the surrounding banded gneiss, and the lineation continues toward the gneiss. In some places, the rock phases in which mafics are scattered is gradational with adjacent sedimentary rocks. The anorthositic mass in contact with gabbroic and dioritic rocks shows spotted features. Various replacement features seen under the microscope and paragenetic sequence of the mineral components in the anorthositic rocks cannot be considered as the origin of magmatic crystallization. From the field and microscopic observations, it is concluded that the anorthositic mass was formed from replacement of the metamorphic rocks and plutonic rocks by the anorthositic magma.

  • PDF

Determination of Flow Direction from Flow Indicators in the Muposan Tuff, Southern and Eastern Cheongsong, Korea (청송 남.동부 무포산응회암의 흐름 지시자로부터 유향 결정)

  • Ahn, Ung-San;Hwan, Sang-Koo
    • Economic and Environmental Geology
    • /
    • v.40 no.3 s.184
    • /
    • pp.319-330
    • /
    • 2007
  • The Muposan Tuff is a stratigraphic unit which is distinguished as a cooling unit in the volcanic rocks of the northeastern Kyeongsang Basin. The Muposan Tuff commonly belongs to tuff field according to the granulometric classification and to vitric tuffs according to the constituent classification. The tuffs are mostly densely to partially welded to include very flattened and sometimes stretched pumices and shards, and involve several flow indicator and lateral gradings in maximum diameter and content of their constituents. Movement pattern from flow lineation, lithic and pumice imbrications, asymmetric flow folds, and lateral gradings in maximum diameter and content of their constituents indicate that the Muposan Tuff had a source from the southeastern part.

Geological Study on the Rocks of the Stone-Monuments-at the around the weonju City, Weonju-gun, Hwoengseong-gun and Hongcheon-gun (석조문화재의 암석에 관한 지질학적 조사 연구 (I)-원주시, 원주군, 횡성군 및 홍천군 지역을 중심으로)

  • Lee, Sang-Hun
    • 보존과학연구
    • /
    • s.13
    • /
    • pp.14-36
    • /
    • 1992
  • The investigation has been made on the rocks consisting the pagoda(12), Buddhist Statues(9) Buldaejwa and cakra(2, rewpectively), stele(5), and Flagpole wupport and stupa(6) which are stood in Weonju city, Weonju-gun, Hwoengseong-gun and Hongcheon-gun, Kangweondo. These rock-monuments range mostly in age from late Shilla Kingdom to middle Korye Kingdom. The geology around this region is mainly composed of Precambrian metamorphic rocks and mesozoic granitic rocks. The granitic rocks are largely divided into Jurassic and cretaceous ones which are slightly different in rock phase. The main rock phase consisting the monumentsare are coarse biotite granite with minor amount of hornblende in Jurassic age. Variation in rock phase is abserved even in part of the stone used in the monuments. Inclusions composed of biotite and hornblende, porphyritic texture with microcline phenocryst, igneous lineation and exfoliation according to weathering are observable in all rocks in these monuments. In the case of stele whose a body and a capstone is remained, one is composed of black slate and the other white limestone. But the turtle shaped pedestal is constituted of coarse biotite granite. These stone-monuments are strongly weathered and exfoliated out about 1∼2mm.In case of exfoliated weathering along igneous lineation, some are taken off about 3∼5mm thick. In some monuments, the degree of weathering is somewhat different according to position, grade of sculpture, and biological activity.

  • PDF

The Deformation Properties and their Formative Processes in Ogcheon Terrain around Ogcheon Town, North Chungcheong Province, Korea (옥천대(沃天帶)의 변형특성(變形特性)과 그 형성(形成) 과정(過程) -충북(忠北) 남서단(南西端)을 예(例)로 하여-)

  • Lee, Byung-Joo;Park, Bong-Soon
    • Economic and Environmental Geology
    • /
    • v.16 no.2
    • /
    • pp.111-123
    • /
    • 1983
  • The studied area is situated in tho southern part of the Ogcheon fold belt, where the "Ogcheon Group" is widespread with Jurassic and Cretaceous intrusions. The regional stratigraphy may be divided into three formations, the lower pebble bearing phyllitic, the middle dark grey phyllitic, and the upper black phyllitic formations. For the purposes of the present study, the area has been partitioned to three structural subareas based on major fold axes and fault line. The main subjects of the research have been discussed from two different points, multiple deformation and minor-micro fold styles. The former is analyzed by pebble elongation, folding and lineation in a pebbly formation as well as schistosity, crenulation cleavage and crenulated lineation in the phyllitic formation. The later describes the characteristic features of fold style in each formation and structural subarea. Although minor fold axes within broad pelitic rocks usually tend to trend northeast and to plunge northward, most of these were probably formed by two stages, first a similar fold phase and second a kink fold phase. Measured structural elements indicate that crenulation cleavage in phyllite formed parallel to fold axes of folded pebble followed a NE phase of first deformation and a fold axes of pebbles diagonal to bedding of phyllite are represented by a NW phase of a second deformation. Microscopically, quartz and mica grains form a micro fold enabling one to establish tectonic levels which occur in different deformation modes in each stratigraphic sequence. Microtextures such as crenulation cleavage, kink band, aggregate band of mica and pressure shadows of porphyroblast of quartz related to qarnet and staurolite may suggest the time relation of crystallization and tectonism. The result of this study may conform that three deformation phase, NE first phase-NE second phase-NW phase, occurred in the area.

  • PDF

A Study on the Lineament Analysis Along Southwestern Boundary of Okcheon Zone Using the Remote Sensing and DEM Data (원격탐사자료와 수치표고모형을 이용한 옥천대 남서경계부의 선구조 분석 연구)

  • Kim, Won Kyun;Lee, Youn Soo;Won, Joong-Sun;Min, Kyung Duck;Lee, Younghoon
    • Economic and Environmental Geology
    • /
    • v.30 no.5
    • /
    • pp.459-467
    • /
    • 1997
  • In order to examine the primary trends and characteristics of geological lineaments along the southwestern boundary of Okcheon zone, we carried out the analysis of geological lineament trends over six selected sub-areas using Landsat-5 TM images and digital elevation model. The trends of lineaments is determined by a minimum variance method, and the resulting geological lineament map can be obtained through generalized Hough transform. We have corrected look direction biases reduces the interpretability of remotely sensed image. An approach of histogram modification is also adopted to extract drainage pattern specifically in alluvial plains. The lineament extracting method adopted in this study is very effective to analyze geological lineaments, and that helps estimate geological trends associated various with the tectonic events. In six sub-areas, the general trends of lineaments are characterized NW, NNW, NS-NNE, and NE directions. NW trends in Cretaceous volcanic rocks and Jurassic granite areas may represent tension joints that developed by rejuvenated end of the Early Cretaceous left-lateral strike-slip motion along the Honam Shear Zone, while NE and NS-NNE trends correspond to fault directions which are parallel to the above Shear Zone. NE and NW trends in Granitic Gneiss are parallel to the direction of schitosity, and NS-NNE and NE trends are interpreted the lineation by compressive force which acted by right-lateral strike-slip fault from late Triassic to Jurassic. And in foliated Granite, NE and NNE trends are coincided with directions of ductile foliation and Honam Shear Zone, and NW-NNW trends may be interpreted direction of another compressional foliation (Triassic to Early Jurassic) or end of the Early Cretaceous tensional joints. We interpreted NS-NNE direction lineation is related with the rejuvenated Chugaryung Fault System.

  • PDF

Tectonic and magmatic development of Bismarck Sea, Papua New Guinea

  • Lee, Sang-Muk
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.209-210
    • /
    • 2006
  • The Bismarck Sea represent a unique region in the equatorial western Pacific where one can explore the relationship between tectonic and magmatic processes associated with back-arc opening. The sea, located north of Papua New Guinea and just south of the equator, formed during the final stages of a long, complex geological development of the Melanesian Borderland. The development resulted from the Cenozoic convergence between the Australian and Pacific- Caroline Plates and the opening of back-arc basins. At present, the Bismarck Sea straddles two oppositely facing trenches, the inactive Manus trench and the active New Britain trench, and covers two basins, the New Guinea Basin (NGB) to the west and the Manus Basin (MB) to the east. The two basins are separated by the shallow Willaumez-Manus Rise (WMR), which trends roughly from WNW to ESE. The origin of these major structural units and their relationship with the presentday zone of major seismicity along the Bismarck Sea Seismic Lineation (BSSL) remains unclear and is the main focus of our study.

  • PDF

A study on the structure of Ogcheon Group in Goesan Area (괴산부근(槐山附近)에 분포(分布)하는 옥천층군(沃川層群)의 지질구조(地質構造)에 관(關)하여)

  • Lee, Dai Sung;Kim, Yong Jun;Chai, In Chul
    • Economic and Environmental Geology
    • /
    • v.10 no.4
    • /
    • pp.177-184
    • /
    • 1977
  • This study is focused on the geological structure of Igog-Jangam folded zone in the vicinity of Goesan town where Ogcheon group distributes. The geology is composed of Gyemyungsan formation, Daehyangsan quartzite, Munjuri formation and Hwanggangri formation of Ogcheon group unknown age in descending order, and porphyritic biotite granite and dyke rocks that intruded into the Ogcheon group. The study revealed that Igog-Jangam folded zone is a plunged synclinal fold based on the following evidences; 1) Some pebbles in Hwanggangri formation at Minaemi-gol (a name of village) consists of phyllite of Munjuri formation. 2) The pebble bearing phyllitic bed in this area, Hwanggangri formation was recognized as the uppermost member in Ogcheon group instead of the basal one of the group. 3) A crest of anticlinal fold has been appeared near the Goegang bridge as a structural counter-part of that of the present area. 4) The study of lineation of minor fold in Munjuri formation also suggests that Igog-Jangam folded zone manifests to be a synclinal structure.

  • PDF

Characteristics of Stone-monuments and geological studies on the rocks( I ) - Weonju-city, Weonju-gun, Hweongseong-gun and Honcheon-gun, Kangweon-do - (석조문화재의 특징과 암석에 대한 지질학적 연구( I ) - 강원도 원주시.원주군.횡성군 및 홍천군 지역 -)

  • Lee, S.H.;Park, K.R.
    • Journal of Conservation Science
    • /
    • v.1 no.1 s.1
    • /
    • pp.40-59
    • /
    • 1992
  • Stone-monuments, distributed in this area, have been investigated and studied in geological and conservational points of view. They are seemed to have been built from the Shilla to Koryeo Kingdoms, although more systematic studies are needed. The used rocks in these monuments are mainly biotite granite of Jurassic age. They are strongly weathered and partly exfoliated along igneous lineation about 1-2 mm(maximum up to 5 mm). They are mainly effected by chemical weathering to be selectively dissolved and by various kind of moss. For conservation, it must be scientifically considered based on characteristics and kind of rock phase, factors on weathering process, situation and protection.

  • PDF

Anisotropy of Magnetic Susceptibility (AMS) of Granitic Rocks in the Eastern Region of the Yangsan Fault (양산단층 동편 화강암질암의 대자율 이방성(AMS))

  • Cho, Hyeong-Seong;Son, Moon;Kim, In-Soo
    • Economic and Environmental Geology
    • /
    • v.40 no.2 s.183
    • /
    • pp.171-189
    • /
    • 2007
  • A study of anisotropy of magnetic susceptibility (AMS) was undertaken on Cretaceous granitic, volcanic and sedimentary rocks in the eastern region of the Yangsan fault, southeast Korea. A total of 542 independently oriented core samples collected form 77 sites were studied. The main magnetic mineral in granitic rocks is magnetite according to the magnitude of bulk susceptibility, high-temperature susceptibility variation and isothermal remanent magnetization. Both of magnetic lineation and foliation with NE-SW trends are revealed in the granitic rocks, while volcanic rocks show scattered directions and sedimentary rocks show only load foliation parallel to the bedding planes. The following evidences read to the conclusion that both magnetic fabrics in the granitic rocks have been obtained by a tectonic stress before full solidification of the magma: (i) A fully hardened granitic rocks would get hardly any fabric, (ii) Difference of the magnetic fabric trends with those of the geological structures in the granitic rocks themselves formed by brittle deformation after solidification (e.g. patterns of small-faults and joints), (iii) Kinking of biotite and undulose extinction in quartz observed under the polarizing microscope, (iv) Discordance of magnetic fabrics in the granitic rocks with those in the surrounding rocks. The NE-SW trend of the magnetic foliations suggests a NW-SE compressive stress of nearly contemporaneous with the emplacement of the granitic rocks. The compression should have caused a sinistral strike-slip movement of the Yangsan Fault considering the trend of the latter. As the age of the granitic rocks in the study area is reported to be around $60\sim70$ Ma, it is concluded that the Yangsan fault did the sinistral strike-slip movement during this time (L. Cretaceous Maastrichtian - Cenozoic Paleocene).