• Title/Summary/Keyword: linearity

Search Result 3,242, Processing Time 0.03 seconds

A Non-Linearity Compensation Method for Matrix Converter Drives Using PQR Power Theory (PQR 전력이론을 이용한 Matrix Converter 구동 시스템의 비선형특성 보상)

  • Lee Kyo-Beum
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.12
    • /
    • pp.751-758
    • /
    • 2004
  • This paper presents a new method to compensate the non-linearity for matrix converter drives using PQR instantaneous Power theory. The non-linearity of matrix converter drives such as commutation delay, turn-on and turn-off time of switching device, and on-state switching device voltage drop is modelled by PQR power theory and compensated using a reference current control scheme. The proposed method does not need any additional hardware and off-line experimental measurements. The proposed compensation method is applied for high performance induction motor drives using a 3 kW matrix converter system without a speed sensor. Simulation and experimental results show the proposed method using PQR power theory Provides good compensating characteristic.

Evaluation Technique of Linearity of Ratio Error and Phase Angle Error of Voltage Transformer Comparison Measurement Equipment (전압변성기 비교 측정 장치의 비오차 및 위상각 오차의 직선성 평가기술)

  • 정재갑;박영태;권성원
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.9
    • /
    • pp.470-474
    • /
    • 2004
  • Both ratio error and phase angle error in voltage transformer(VT) depend on values of burden of VT used. A method of evaluation for linearity of ratio error and phase angle error in VT measurement equipment have been developed using the standard resistance burdens, with negligible AC-DC resistance difference less than $10^-6$. These burden consists of five standard resistors, with nominal resistance of 100 $\Omega$, 1 k$\Omega$, 10 k$\Omega$, 100 k$\Omega$, and 1 M$\Omega$. The developed method has been applied in VT measurement equipment of industry and the validity of the developed method has been verified by showing the consistency of the result of linearity obtained using VT with wide ratio error.

Evaluation Technique for Linearity of Ratio Error of Instrument Transformer Comparator Using Voltage Transformer with Wide Range of Error Ratios (넓은 범위의 비오차를 갖는 전압변성기를 이용한 계기용 변성기 비교 측정 장치의 비오차 직선성 평가기술)

  • Jung Jae Kap;Kwon Sung Won;Kim Han Jun;Park Young Tae;Kim Myung Soo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.2
    • /
    • pp.66-70
    • /
    • 2005
  • Linearity of ratio error of instrument transformer comparator has been tested using wide ratio error voltage transformer(VT) with the ratio errors in the range of -3 % to 3 %. The technique is the method for evaluation of the linearity for instrument transformer comparator by comparing both the theoretical and experimental values in wide ratio error VT. The developed method has been successfully applied for calibration and correction in instrument transformer comparator belonging to industry.

A Study on Improvement of Linearity and Efficiency Compensation in a Doherty Power Amplifier (Doherty 전력증폭기의 선형성 개선과 효율 보상 방안에 관한 연구)

  • Jang, Jeong-Seok;Do, Ji-Hoon;Yun, Ho-Seok;Kim, Dae-Hee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.2
    • /
    • pp.75-82
    • /
    • 2009
  • This paper proposes a method which increases the linearity using an improvement mechanism of Doherty power amplifier and compensates the decrement of efficiency due to improvement of linearity. To verify the method, a 20W power amplifier is designed and implemented. Compared with 2-way Doherty power amplifier, the implemented 3-way Doherty power amplifier with class F shows improved linearity about 10dBc and efficiency about 1.5%. Also, efficiency characteristic has been improved about 3.5% compared with the 2-way Doherty power amplifier while maintaining linearity. This results show that the proposed 3-way Doherty power amplifier with class F is shown to be adequate for improvement of efficiency and linearity. It is expected that the proposed amplifier can be used for various wireless communication system amplifiers.

  • PDF

Differential non-linearity correction for successive approximation ADC

  • Yamada, Hikaru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10a
    • /
    • pp.847-850
    • /
    • 1987
  • In this paper a new method to correct the differential non-linearity(D NL) error for a successive approximation is proposed. The DNL of ADC is very important characteristic in the field of radiation pulse height analysis or measurement of probability density function. The results of computer simulations are shown to demonstrate the feasibility of the proposed correction method.

  • PDF

A Study for Efficiency Improvement of Feedforward Power Amplifier by Using Doherty Amplifier (Doherty증폭기를 이용한 Feedforward전력 증폭기의 효율 개선에 관한 연구)

  • Lee Taek-Ho;Jung Sung-Chan;Park Cheon-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.11 s.102
    • /
    • pp.1059-1066
    • /
    • 2005
  • This paper reports an application of Doherty amplifier for efficiency improvement of feedforward power amplifier(FPA). For performance analysis, we measured 15 W average output power using WCDMA 4FA input signal with a center frequency 2.14 GHz. The applied Doherty amplifier presents the characteristics of high efficiency and low linearity in comparison to the class AB amplifier, and it was used as main amplifier of FPA fir efficiency improvement. To analyze the change of characteristic, tow Doherty amplifiers whose linearity and efficiency are different were applied. The applied FPAs are improved about $2\%$ or more performance in efficiency, but decreased in linearity on 15 W average output power. We additionally modified the coupling factor(CF) of the error loop and the error amplifier capacity for linearity improvement. Aa a result, the efficiency improvement and high linearity resulted from the change of CF and error amplifier capacity. However, we think if the linearity of Doherty amplifier were more than 35 dBc, the FPA would improve the performance about $2\%$ or more efficiency and maintain enough linearity.