• Title/Summary/Keyword: linear thermal load

Search Result 73, Processing Time 0.026 seconds

Investigating nonlinear thermal stability response of functionally graded plates using a new and simple HSDT

  • Bensaid, Ismail;Bekhadda, Ahmed;Kerboua, Bachir;Abdelmadjid, Cheikh
    • Wind and Structures
    • /
    • v.27 no.6
    • /
    • pp.369-380
    • /
    • 2018
  • In this research work, nonlinear thermal buckling behavior of functionally graded (FG) plates is explored based a new higher-order shear deformation theory (HSDT). The present model has just four unknowns, by using a new supposition of the displacement field which enforces undetermined integral variables. A shear correction factor is, thus, not necessary. A power law distribution is employed to express the disparity of volume fraction of material distributions. Three kinds of thermal loading, namely, uniform, linear, and nonlinear and temperature rises over z-axis direction are examined. The non-linear governing equations are resolved for plates subjected to simply supported boundary conditions at the edges. The results are approved with those existing in the literature. Impacts of various parameters such as aspect and thickness ratios, gradient index, type of thermal load rising, on the non-dimensional thermal buckling load are all examined.

Thermal buckling and stability of laminated plates under non uniform temperature distribution

  • Widad Ibraheem Majeed;Ibtehal Abbas Sadiq
    • Steel and Composite Structures
    • /
    • v.47 no.4
    • /
    • pp.503-511
    • /
    • 2023
  • Stability of laminated plate under thermal load varied linearly along thickness, is developed using a higher order displacement field which depend on a parameter "m", whose value is optimized to get results closest to three-dimension elasticity results. Hamilton, s principle is used to derive equations of motion for laminated plates. These equations are solved using Navier-type for simply supported boundary conditions to obtain non uniform critical thermal buckling and fundamental frequency under a ratio of this load. Many design parameters of cross ply and angle ply laminates such as, number of layers, aspect ratios and E1/E2 ratios for thick and thin plates are investigated. It is observed that linear and uniform distribution of temperature reduces plate frequency.

Effects of Insulation Layer upon the Thermal Behavior of Linear Motors

  • Eun, In-Ung
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.896-905
    • /
    • 2003
  • A linear motor has many advantages next to conventional feed mechanisms: high transitional speed and acceleration, high control performance, and good positioning accuracy at high speed. Through the omission of a power transfer element, the linear motor shows no wear and no backlash, has a long lifetime, and is easy to assemble. A disadvantage of the linear motor is low efficiency and resultant high-temperature rise in itself and neighboring structures during operation. This paper presents the thermal behavior of the linear motor as a feed mechanism in machine tools. To improve the thermal behavior, an insulation layer is used. By placing the insulation layer between the primary part and the machine table, both the temperature difference and the temperature fluctuation in the machine table due to a varying motor load are reduced.

Stability Evaluation & Determination of Critical Buckling Load for Non-Linear Elastic Composite Column (비선형 탄성 복합재료 기둥의 임계 좌굴하중 계산 및 안정성 평가)

  • 주기호;정재호;강태진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.215-219
    • /
    • 2003
  • Buckling and post-buckling Analysis of Ludwick type and modified Ludwick type elastic materials was carried out. Because the constitutive equation, or stress-strain relationship is different from that of linear elastic one, a new governing equation was derived and solved by $4^{th}$ order Runge-Kutta method. Considered as a special case of combined loading, the buckling under both point and distributed load was selected and researched. The final solution takes distinguished behavior whether the constitutive relation is chosen to be modified or non-modified Ludwick type as well as linear or non-linear. We also derived strain energy function for non-linear elastic constitutive relationship. By doing so, we calculated the criterion function which estimates the stability of the equilibrium solutions and determines critical buckling load for non-linear cases. We applied this theory to the constitutive relationship of fabric, which also is the non-linear equation between the applied moment and curvature. This results has both technical and mathematical significance.

  • PDF

Stress Analysis of the Micro-structure Considering the Residual Stress (잔류응력을 고려한 미세구조물의 강도해석)

  • 심재준;한근조;안성찬;한동섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.820-823
    • /
    • 2002
  • MEMS structures Generally have been fabricated using surface-machining, but the interface failure between silicon substrate and evaporated thin film frequently takes place due to difference of linear coefficient of thermal expansion. Therefore this paper studied the effect of the residual stress caused by variable external loads. This study did not analyzed accurate quantity of the residual stress but trend for the effect of residual stress. Several specimens were fabricated using other material(Al, Au and Cu) and thermal load was applied. The residual stress was measured by nano-indentation using AFM. The results showed the existence of the residual stress due to thermal load. The indentation area of the thermal loaded thin film reduced about 3.5% comparing with the virgin thin film caused by residual stress. The finite element analysis results are similar to indentation test.

  • PDF

Response of dynamic interlaminar stresses in laminated plates under free vibration and thermal load

  • Zhu, S.Q.;Chen, X.;Wang, X.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.6
    • /
    • pp.753-765
    • /
    • 2007
  • The response histories and distribution of dynamic interlaminar stresses in composite laminated plates under free vibration and thermal load is studied based on a thermoelastodynamic differential equations. The stacking sequence of the laminated plates may be arbitrary. The temperature change is considered as a linear function of coordinates in planes of each layer. The dynamic mode of displacements is considered as triangle series. The in-plane stresses are calculated by using geometric equations and generalized Hooke's law. The interlaminar stresses are evaluated by integrating the 3-D equations of equilibrium, and utilizing given boundary conditions and continuity conditions of stresses between layers. The response histories and distribution of interlaminar stress under thermal load are presented for various vibration modes and stacking sequence. The theoretical analyses and results are of certain significance in practical engineering application.

Structural Safety Assessment of Piping Used in Offshore Plants According to Thermal Load and Motion (해양플랜트에 사용되는 배관의 열 하중과 구조물의 운동에 따른 구조안전성 평가)

  • Ryu, Bo Rim;Kang, Ho Keun;Duong, Phan Anh;Lee, Jin Uk
    • Journal of Navigation and Port Research
    • /
    • v.45 no.4
    • /
    • pp.212-223
    • /
    • 2021
  • The objective of this study was to evaluate structural safety according to environmental conditions acting on the piping of offshore structure and the motion of the structure. As for conditions acting on the piping, the maximum and minimum temperature conditions were used to analyze the design conditions of N2 generator. The motion of the structure was calculated and applied according to the DNV(Det Norske Veritas) rule. Each condition was combined and a total of 26 load combinations were constructed according to thermal load, motion load, and presence or absence of pipe support. Analysis was performed using a commercial program MSC Patran/Nastran. Thermal analysis was performed by applying the steady-state method, Sol 153. Thermal-structural coupled analysis was performed using Sol 101, a linear-static method. As a result of the analysis, the stress tended to increase when temperature inside the pipe was lower in Set 1 and Set 2, when temperature was higher in Set 3, and when the temperature difference between the inside and outside of the pipe in Set 4 was increased. However, the sum of stresses in the condition with only temperature load and the condition with only the kinetic load did not show the same value as the stress in the composite load condition of two loads. That is, the influence of the motion load varied depending on the direction of motion, the arrangement of pipes, and the position of the support. Therefore, it is necessary to comprehensively consider the size and direction of the motion load acting on the piping, the arrangement of the piping, and the location of the pipe supports during the design of piping.

Effect of thermal laser pulse in transversely isotropic Magneto-thermoelastic solid due to Time-Harmonic sources

  • Lata, Parveen;Kaur, Iqbal;Singh, Kulvinder
    • Coupled systems mechanics
    • /
    • v.9 no.4
    • /
    • pp.343-358
    • /
    • 2020
  • The present research deals with the time-harmonic deformation in transversely isotropic magneto thermoelastic solid with two temperature (2T), rotation due to inclined load and laser pulse. Generalized theory of thermoelasticity has been formulated for this mathematical model. The entire thermo-elastic medium is rotating with uniform angular velocity and subjected to thermally insulated and isothermal boundaries. The inclined load is supposed to be a linear combination of a normal load and a tangential load. The Fourier transform techniques have been used to find the solution to the problem. The displacement components, stress components, and conductive temperature distribution with the horizontal distance are computed in the transformed domain and further calculated in the physical domain using numerical inversion techniques. The effect of angle of inclination of normal and tangential load for Green Lindsay Model and time-harmonic source for Lord Shulman model is depicted graphically on the resulting quantities.

Optimal Cooling Operation of a Single Family House Model Equipped with Renewable Energy Facility by Linear Programming (신재생에너지 단독주택 모델 냉방운전의 선형계획법 기반 운전 최적화 연구)

  • Shin, Younggy;Kim, Eui-Jong;Lee, Kyoung-ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.12
    • /
    • pp.638-644
    • /
    • 2017
  • Optimal cooling operation algorithm was developed based on a simulation case of a single family house model equipped with renewable energy facility. EnergyPlus simulation results were used as virtual test data. The model contained three energy storage elements: thermal heat capacity of the living room, chilled water storage tank, and battery. Their charging and discharging schedules were optimized so that daily electricity bill became minimal. As an optimization tool, linear programming was considered because it was possible to obtain results in real time. For its adoption, EnergyPlus-based house model had to be linearly approximated. Results of this study revealed that dynamic cooling load of the living room could be approximated by a linear RC model. Scheduling based on the linear programming was then compared to that by a nonlinear optimization algorithm which was made using GenOpt developed by a national lab in USA. They showed quite similar performances. Therefore, linear programming can be a practical solution to optimal operation scheduling if linear dynamic models are tuned to simulate their real equivalents with reasonable accuracy.

Magnetic and Thermal Analysis of a Water-cooled Permanent Magnet Linear Synchronous Motor

  • Zhang, Xinmin;Lu, Qinfen;Cheng, Chuanying;Ye, Yunyue
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.498-504
    • /
    • 2012
  • The water-cooled Permanent Magnet Linear Synchronous Motor (PMLSM) has a wide range of applications due to high efficiency, high thrust force density and high acceleration. In order to ensure normal operation and maximum output, both the magnetic and thermal performance are vital to be considered. Based on ANSYS software, electromagnetic and thermal finite-element analysis (FEA) models of a 14-pole, 12-slot water-cooled PMLSM are erected adopting suitable assumptions. Firstly, the thrust force and force ripple with different current densities are calculated. Secondly, the influence of different water flow on the motor heat dissipation and force performance under different operationional conditions are investigated and optimized. Furthermore, for continuous operation, the temperature rise and thrust feature are studied under the rated load 8A, the proper temperature $120^{\circ}C$ and the limited temperature $155^{\circ}C$. Likewise, for short-time operation, the maximum duration is calculated when applied with a certain large current. Similarly, for intermittent operation, load time as well as standstill time are determined with the optimal current to achieve better thrust performance.