• Title/Summary/Keyword: linear system model

Search Result 3,071, Processing Time 0.037 seconds

A Comparison of the Goodness-of-Fit between Two Models of Expenditure Function: a Single-Equation Model versus a Complete- System-of-Demand-Equation Model (단일방정식과 관련방정식체계를 적용한 소비지출 함수의 모델 적합성 비교)

  • 황덕순;김숙향
    • Journal of Families and Better Life
    • /
    • v.20 no.1
    • /
    • pp.45-56
    • /
    • 2002
  • The main purposes of this article are to introduce the theoretical backgrounds and empirical application methods of two different Models for the function of expenditure, and to compare the goodness-o(-fit of the two models: a single-equation model and a complete-system-of-demand-equation model. For the empirical analysis of the single-equation model, a linear formula and a double-leg formula were employed. In order to test the complete-system-of-demand-equation model empirically, the \"Linear Approximation/Almost Ideal Demand System (LA/AIDS)" was used. The independent variables were the total living expense and expenditure categories Price index. The data used in this study were obtained from the quarterly statistics of "The Annual Report on the Urban Family Income and Expenditure Survey (Dosigagyeyonbo)" and "The Annual Report on the Consumer Price Index (Sobijamulgajaryo)," for the years 1994 to 1997. The goodness-of-fit (R-square) was higher with the complete-system-of-demand-equation model than with the single-equation model for the budget share on food (excluding eating-out expenses) and for the share on cultural and recreational activities. However, there was no difference between the two models in terms of the proportion of the expenditure on automobile fuel.fuel.

Extended Linear Vulnerability Discovery Process

  • Joh, HyunChul
    • Journal of Multimedia Information System
    • /
    • v.4 no.2
    • /
    • pp.57-64
    • /
    • 2017
  • Numerous software vulnerabilities have been found in the popular operating systems. And recently, robust linear behaviors in software vulnerability discovery process have been noticeably observed among the many popular systems having multi-versions released. Software users need to estimate how much their software systems are risk enough so that they need to take an action before it is too late. Security vulnerabilities are discovered throughout the life of a software system by both the developers, and normal end-users. So far there have been several vulnerability discovery models are proposed to describe the vulnerability discovery pattern for determining readiness for patch release, optimal resource allocations or evaluating the risk of vulnerability exploitation. Here, we apply a linear vulnerability discovery model into Windows operating systems to see the linear discovery trends currently observed often. The applicability of the observation form the paper show that linear discovery model fits very well with aggregate version rather than each version.

Design of nonlinear optimal regulators using lower dimensional riemannian geometric models

  • Izawa, Yoshiaki;Hakomori, Kyojiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.628-633
    • /
    • 1994
  • A new Riemannian geometric model for the controlled plant is proposed by imbedding the control vector space in the state space, so as to reduce the dimension of the model. This geometric model is derived by replacing the orthogonal straight coordinate axes on the state space of a linear system with the curvilinear coordinate axes. Therefore the integral manifold of the geometric model becomes homeomorphic to that of fictitious linear system. For the lower dimensional Riemannian geometric model, a nonlinear optimal regulator with a quadratic form performance index which contains the Riemannian metric tensor is designed. Since the integral manifold of the nonlinear regulator is determined to be homeomorphic to that of the linear regulator, it is expected that the basic properties of the linear regulator such as feedback structure, stability and robustness are to be reflected in those of the nonlinear regulator. To apply the above regulator theory to a real nonlinear plant, it is discussed how to distort the curvilinear coordinate axes on which a nonlinear plant behaves as a linear system. Consequently, a partial differential equation with respect to the homeomorphism is derived. Finally, the computational algorithm for the nonlinear optimal regulator is discussed and a numerical example is shown.

  • PDF

A Design on Robust Model Following Servo System Using $\delta$--Operator ($\delta$-연산자를 이용한 강인한 모델 추종형 서보 제어 시스템의 구성에 관한연구)

  • Kim, Chung-Tek;Hwang, Hyun-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.2
    • /
    • pp.121-126
    • /
    • 2000
  • In the fast sampling limit the delta operator model tends to the analog system model. This fundamental property of the delta operator model unifies continuous and discrete time control system. In this paper we study robust linear optimal model following servo system in the presence of disturbances and parameter perturbations. A technique to directly design the generalized differential operator based unified control system that covers both differential operator based continuous time and delta operator based discrete time case is presented. The quadratic criterion function for a linear system is used to design the robust unified servo control system The characteristics of the proposed servo system are analysed and simulated to verify the robustness.

  • PDF

Descriptor Type Linear Parameter Dependent System Modeling And Control of Lagrange Dynamics

  • Kang, Jin-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.444-448
    • /
    • 2003
  • In this paper, the Lagrange dynamics is studied. A state space representation of Lagrange dynamics and control algorithm based on the state feedback pole placement are presented. The state space model presented is descriptor type linear parameter dependent system. It is shown that the control algorithms based on the linear system theory can be applicable to the state space representation of Lagrange dynamics. To show that the linear system theory can be applicable to the state space representation of Lagrange dynamics, the LMI based regional pole-placement design algorithm is developed and present two examples.

  • PDF

A Design on Robust Model Following Servo System using $\delta$- Operator ($\delta$- 연산자를 이용한 강인한 모델 추종형 서보 시스템의 구성에 관한 연구)

  • Kim, Jeong-Taek;Lee, Hwa-Seok;Park, Seong-Jun;Chu, Yeong-Bae;Hwang, Hyeon-Jun;Lee, Yang-U;Park, Jun-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.6
    • /
    • pp.747-752
    • /
    • 1999
  • In the fast sampling limit, the delta operator model tends to the analog system model. This fundamental property of the delta operator model unifies continuous and discrete time control system. In this paper, we study robust linear optimal model following servo system in the presence of disturbances and parameter perturbations. A technique to directly design the generalized differential operator based unified control system that convers both differential operator based continuous time and delta operator based discrete time case is presented. The quadratic criterion function for a linear system is used to design the robust unified servo control. The characteristics of the proposed servo system are analysed and simulated to verify the robustness.

  • PDF

A Preliminary Research for Developing System Prototype Generating Linear Schedule (선형 공정표를 생성하는 시스템 프로토타입 개발을 위한 기초 연구)

  • Ryu, Han-Guk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • Linear scheduling method limits to present works of work breakdown structure as a form of lines and was often developed manually. In other words, linear schedule could not utilize activity, work breakdown structure, and etc. information of network schedule such as CPM(Critical Path Method) and has been used only for reporting or confirming construction master plan. Therefore, it is necessary to develop system which can automatically generating the linear schedule based on the network schedule having many accumulated and useful construction schedule information. Thus, this research has an effort to establish data process model, data flow diagram, and data model in order to make linear schedule. In addition, this research addresses the system solution structure, user interface class diagram and logic diagram, and data type schema. The results of this paper can be used as a preliminary research for developing linear schedule generating system prototype by utilizing the network schedule information.

Robust ILQ controller design of hot strip mill looper system

  • Kim, Seong-Bae;Hwang, I-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.75.5-75
    • /
    • 2001
  • In this paper, we study design of a ILQ(Inverse Linear Quadratic optimal control) looper control system for hot strip mills. The looper which is placed between stands plays an important role in controlling strip width by regulating strip tension variation generated from the velocity difference of main work rolls. A Looper servo controller is designed by ILQ control theory which is an inverse problem of LQ(Linear Quadratic optimal control) control. The mathematical model for looper system is obtained by Taylor´s linearization of nonlinear differential equations. Then we designed linear controller for linearization model by using the ILQ control algorithm. Thereafter this controller is applied to the nonlinear model for model identification. As a result, we show the controller´s robustness for the model error, external disturbance and sensor noise.

  • PDF

A Study on the Feed Rate Optimization of a Linear Motored Feed Drive System for Minimum Vibrations (Linear Motor 이송계의 진동 최소화를 위한 이송속도 최적화)

  • 최영휴;홍진현;최응영;김태형;최원선
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.321-325
    • /
    • 2004
  • Linear motor feed drive systems have been broadly used in machine tools or precision automatic feed systems. Recently, modem machine tools require high speed and high precision feed drive system to achieve high productivity. Unfortunately, a feed drive system, even though it was optimum designed, may experience severe transient vibrations during high-speed operation if its feed rate control is unsuitable. A rough feed rate curve having discontinuity in its acceleration profile causes a serious vibration problem in the feed slides system. This paper presents a feed rate optimization of a machine tool feed slide system, which is driven by a linear motor, for its minimum vibrations. Firstly, a 4-degree-of-freedom lumped parameter model is proposed for the vibration analysis of a linear motor driven machine tool feed drive system. Next, a feed rate optimization of the feed slide is carried out for minimum vibrations. The feed rate curve optimization strategy is to find out the most appropriate acceleration profile with jerk continuity. Of course, the optimized feed rate should approximate to the desired one as possible. A genetic algorithm with variable penalty function was used in this feed rate optimization.

  • PDF

Development of Linear DC Motor Pilot Model for High Thrust (고추력용 리니어직류모터 Pilot 모델 개발)

  • 정재한;서경일;박재완;박재한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.1002-1005
    • /
    • 2000
  • The goal of this study is to develop a linear DC motor with high thrust, speed and stiffness for machine tool. In the first phase of this study, We has made a pilot model and measuring system. Using the measuring system, We could finished the performance test of the pilot model, which continuous thrust is 1, 391N. Experimental values agree with the theoretical results well. In a certain sense, We are expecting the realization of linear motor with continuous thrust of 6, 000 to 7, 000N next time.

  • PDF