• Title/Summary/Keyword: linear standard model

Search Result 432, Processing Time 0.022 seconds

Stochastic upscaling via linear Bayesian updating

  • Sarfaraz, Sadiq M.;Rosic, Bojana V.;Matthies, Hermann G.;Ibrahimbegovic, Adnan
    • Coupled systems mechanics
    • /
    • v.7 no.2
    • /
    • pp.211-232
    • /
    • 2018
  • In this work we present an upscaling technique for multi-scale computations based on a stochastic model calibration technique. We consider a coarse-scale continuum material model described in the framework of generalized standard materials. The model parameters are considered uncertain, and are determined in a Bayesian framework for the given fine scale data in a form of stored energy and dissipation potential. The proposed stochastic upscaling approach is independent w.r.t. the choice of models on coarse and fine scales. Simple numerical examples are shown to demonstrate the ability of the proposed approach to calibrate coarse scale elastic and inelastic material parameters.

3D Modeling and Balancing Control of Two-link Underactuated Robots using Matlab/Simulink

  • Yoo, Dong Sang
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.4
    • /
    • pp.255-260
    • /
    • 2019
  • A pendubot is a representative example of an underactuated system that has fewer actuators than the degree of freedom of the system. In this study, the characteristics of the pendubot are first reviewed; each part is then designed using Solidworks by dividing the pendubot into three parts: the base frame, first link frame, and second link frame. These three parts are then imported into the Simulink environment via a STEP file format, which is the standard protocol used in data exchange between CAD applications. A 3D model of the pendubot is then constructed using Simscape, and the usefulness of the 3D model is validated by a comparison with a dynamic equation derived using the Lagrangian formulation. A linearized model around an upright equilibrium position is finally obtained, and a sliding mode controller is designed based on the linear quadratic regulator. Simulation results showed that the designed controller effectively maintained upright balance of the pendubot in the presence of disturbance.

Comparison of the Thermal-Hydraulic Characteristics of Optimised Fuel Assembly with That of Standard Fuel Assembly (최적 핵연료집합체와 표준 핵연료집합체의 열수력학적 특성비교)

  • Paik, Hyun-Jong;Rim, Chang-Saeng;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.66-74
    • /
    • 1990
  • The thermal-hydraulic characteristics of the 17$\times$17 OFA (Optimized Fuel Assembly) used in the KNU 7&8 are analyzed and compared with that of the 17$\times$17 SFA (Standard Fuel Assembly) loaded in the KNU 5&6. The thermal-hydraulic characteristics analyzed are minimum DNBR, fuel centerline temperature and exit void fraction at normal operation and design over power transient. Additionally, local linear rod power, which will cause fuel centerline melting, is calculated. The DNBR sensitivity calculations are performed with respect to the reactor operating parameters. COBRA-IV-I code is used for these calculations. The modified W-3 correltion and the drift-flux model are applied for the critical heat flux calculation and the void fraction calculation, respectively. From the calculated results, it has been found that the possibility of DNB occurrence is higher in the OFA than in the SFA. The other hand, the local linear power resulting in fuel centerline moiling of the OFA is nearly equal to that of the SFA.

  • PDF

Free and forced vibration analysis of FG-CNTRC viscoelastic plate using high shear deformation theory

  • Mehmet Bugra Ozbey;Yavuz Cetin Cuma;Ibrahim Ozgur Deneme;Faruk Firat Calim
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.413-426
    • /
    • 2024
  • This paper investigates the dynamic behavior of a simply supported viscoelastic plate made of functionally graded carbon nanotube reinforced composite under dynamic loading. Carbon nanotubes are distributed in 5 different shapes: U, V, A, O and X, depending on the shape they form through the thickness of the plate. The displacement fields are derived in the Laplace domain using a higher-order shear deformation theory. Equations of motion are obtained through the application of the energy method and Hamilton's principle. The resulting equations of motion are solved using Navier's method. Transforming the Laplace domain displacements into the time domain involves Durbin's modified inverse Laplace transform. To validate the accuracy of the developed algorithm, a free vibration analysis is conducted for simply supported plate made of functionally graded carbon nanotube reinforced composite and compared against existing literature. Subsequently, a parametric forced vibration analysis considers the influence of various parameters: volume fractions of carbon nanotubes, their distributions, and ratios of instantaneous value to retardation time in the relaxation function, using a linear standard viscoelastic model. In the forced vibration analysis, the dynamic distributed load applied to functionally graded carbon nanotube reinforced composite viscoelastic plate is obtained in terms of double trigonometric series. The study culminates in an examination of maximum displacement, exploring the effects of different carbon nanotube distributions, volume fractions, and ratios of instantaneous value to retardation times in the relaxation function on the amplitudes of maximum displacements.

A computer based simulation model for the fatigue damage assessment of deep water marine riser

  • Pallana, Chirag A.;Sharma, Rajiv
    • Ocean Systems Engineering
    • /
    • v.12 no.1
    • /
    • pp.87-142
    • /
    • 2022
  • An analysis for the computation of Fatigue Damage Index (FDI) under the effects of the various combination of the ocean loads like random waves, current, platform motion and VIV (Vortex Induced Vibration) for a certain design water depth is a critically important part of the analysis and design of the marine riser platform integrated system. Herein, a 'Computer Simulation Model (CSM)' is developed to combine the advantages of the frequency domain and time domain. A case study considering a steel catenary riser operating in 1000 m water depth has been conducted with semi-submersible. The riser is subjected to extreme environmental conditions and static and dynamic response analyses are performed and the Response Amplitude Operators (RAOs) of the offshore platform are computed with the frequency domain solution. Later the frequency domain results are integrated with time domain analysis system for the dynamic analysis in time domain. After that an extensive post processing is done to compute the FDI of the marine riser. In the present paper importance is given to the nature of the current profile and the VIV. At the end we have reported the detail results of the FDI comparison with VIV and without VIV under the linear current velocity and the FDI comparison with linear and power law current velocity with and without VIV. We have also reported the design recommendations for the marine riser in the regions where the higher fatigue damage is observed and the proposed CSM is implemented in industrially used standard soft solution systems (i.e., OrcaFlex*TM and Ansys AQWA**TM), Ms-Excel***TM, and C++ programming language using its object oriented features.

Optimization of Fuzzy Systems by Means of GA and Weighting Factor (유전자 알고리즘과 하중값을 이용한 퍼지 시스템의 최적화)

  • Park, Byoung-Jun;Oh, Sung-Kwun;Ahn, Tae-Chon;Kim, Hyun-Ki
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.6
    • /
    • pp.789-799
    • /
    • 1999
  • In this paper, the optimization of fuzzy inference systems is proposed for fuzzy model of nonlinear systems. A fuzzy model needs to be identified and optimized by means of the definite and systematic methods, because a fuzzy model is primarily acquired by expert's experience. The proposed rule-based fuzzy model implements system structure and parameter identification using the HCM(Hard C-mean) clustering method, genetic algorithms and fuzzy inference method. Two types of inference methods of a fuzzy model are the simplified inference and linear inference. in this paper, nonlinear systems are expressed using the identification of structure such as input variables and the division of fuzzy input subspaces, and the identification of parameters of a fuzzy model. To identify premise parameters of fuzzy model, the genetic algorithms is used and the standard least square method with the gaussian elimination method is utilized for the identification of optimum consequence parameters of fuzzy model. Also, the performance index with weighting factor is proposed to achieve a balance between the performance results of fuzzy model produced for the training and testing data set, and it leads to enhance approximation and predictive performance of fuzzy system. Time series data for gas furnace and sewage treatment process are used to evaluate the performance of the proposed model.

  • PDF

Design Optimization of A Multi-Blade Centrifugal Fan with Navier-Stokes Analysis and Response Surface Method (삼차원 Navier-Stokes 해석과 반응면기법을 이용한 원심다익송풍기의 최적설계)

  • Seo, Seoung-Jin;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1457-1463
    • /
    • 2003
  • In this paper, the response surface method using three-dimensional Navier-Stokes analysis to optimize the shape of a multi-blade centrifugal fan, is described. For numerical analysis, Reynolds-averaged Navier-Stokes equations with standard k - c turbulence model are transformed into non-orthogonal curvilinear coordinate system, and are discretized with finite volume approximations. Due to the large number of blades in this centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models for economic calculations. Linear Upwind Differencing Scheme(LUDS) is used to approximate the convection terms in the governing equations. SIMPLEC algorithm is used as a velocity-pressure correction procedure. Design variables, location of cur off, radius of cut off, expansion angle of scroll and width of impeller were selected to optimize the shapes of scroll and blades. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, the efficiency was successfully improved. It was found that the optimization process provides reliable design of this kind of fans with reasonable computing time.

Application of Constant Rate of Velocity or Pressure Change Method to Improve Annular Jet Pump Performance

  • Yang, Xuelong;Long, Xinping;Kang, Yong;Xiao, Longzhou
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.3
    • /
    • pp.137-143
    • /
    • 2013
  • To improve annular jet pump (AJP) performance, new ways named constant rate of velocity/pressure change method (CRVC/CRPC) were adopted to design its diffuser. The design formulas were derived according to the assumption of linear velocity/pressure variation in the diffuser. Based on the two-dimensional numerical simulations, the effect of the diffuser profile and the included angle on the pump performance and the internal flow details has been analyzed. The predicted results of the RNG k-epsilon turbulence model show a better agreement with the experiment data than that of the standard and the realizable k-epsilon turbulence models. The AJP with the CRPC diffuser produces a linear pressure increase in the CRPC diffuser as expected. The AJP with CRPC/CRVC diffuser has better performance when the diffuser included angle is greater or the diffuser length is shorter. Therefore, the AJP with CRPC/CRVC diffuser is suitable for applications requiring space limitation and weight restriction.

Taste Response of Electrodes Coated with Polymeric Lipid Membrane (고분자 지질막 전극 센서의 맛 반응 평가)

  • 조용진;박인선;김남수
    • Journal of Biosystems Engineering
    • /
    • v.27 no.3
    • /
    • pp.249-258
    • /
    • 2002
  • The fourteen different electrodes coated with polymeric lipid membrane were evaluated to selectively monitor the sweet, salty, sour and bitter tastes, and umami. The polymeric lipid membrane consisted of the three components, or polymer matrix, plasticizer and electroactive material, the compositional ratio of which was 1:1.25:1. Herein, the 14 different electroactive materials were used. Sucrose, NaCl, citric acid, caffeine and MSG were used as standard materials of sweet, salty, sour and bitter tastes, and umami. The linear responses of each electrode regarding 5 tastes were analyzed by means of the correlation coefficient between electric potential difference and concentration of a taste material when the linearity was based on a linear model and a thermodynamic model, respectively. As fur salty taste, the electrode coated with valinomycin had a selective linearity at the significance level of 0.01. For monitoring sweet taste, the electrode with oleylamine and the electrode with the mixture of tai-n-octylmethylammonium chloride and dioctylphosphate (2:8) showed the significant linearities at the levels of 0.05 and 0.10, respectively.

Development of Standarized Staffing Indices in School Foodservice System (학교급식시스템 유형별 표준 조리인력 산정모델 개발)

  • 이보숙
    • Journal of Nutrition and Health
    • /
    • v.31 no.3
    • /
    • pp.354-362
    • /
    • 1998
  • The purposes of this study were to develop standardized indices of staffing needs in each school, foodservice system through work sampling methodology . Conventional school foodservices were classified into 5 groups depending on size of meals served. Commissary school foodservices were also classified into 5 groups by cluster analysis using number of meals served, number of satellite schools, and time for transportation of food. Work measurement through work sampling methodology was conducted in 15 conventional and 21 commissary foodservices during 3 consecutive days from September to October in 1995. Statistical data analysis was completed using the SAS programs for descriptive analysis, cluster analysis, and simple linear regression. The results were as follows : Average points of leveling factors of conventional and commissary foodservices were 1.066 and 1.061 , respectively. Mean labor hours per work force was 328 minutes and 366 minutes in conventional and commissary foodservice , respectively. Standardized work time was calculated using leveling factor, ILO allowance rate (175) , and observational work time. The model for standardized indices of staffing needs was developed based on simple linear regression in each school foodservice system. In conventional school foodservice systems(for 100-1,900 meals per day) standardized staffing needs=3.2497 +0.005267$\times$number of meals served (F=273.1, R-square 0.9750, p<0.001). In commissary school foodservice systems (for 200-1,600 meals per day ) Standardized staffing needs=3.393384 +0.0063$\times$number of meals served (F=30.78, R-square 0.6580, p<0.001).

  • PDF