• Title/Summary/Keyword: linear spectral transformation

Search Result 28, Processing Time 0.023 seconds

Maximum mutual information estimation linear spectral transform based adaptation (Maximum mutual information estimation을 이용한 linear spectral transformation 기반의 adaptation)

  • Yoo, Bong-Soo;Kim, Dong-Hyun;Yook, Dong-Suk
    • Proceedings of the KSPS conference
    • /
    • 2005.04a
    • /
    • pp.53-56
    • /
    • 2005
  • In this paper, we propose a transformation based robust adaptation technique that uses the maximum mutual information(MMI) estimation for the objective function and the linear spectral transformation(LST) for adaptation. LST is an adaptation method that deals with environmental noises in the linear spectral domain, so that a small number of parameters can be used for fast adaptation. The proposed technique is called MMI-LST, and evaluated on TIMIT and FFMTIMIT corpora to show that it is advantageous when only a small amount of adaptation speech is used.

  • PDF

A Closed-Form Solution of Linear Spectral Transformation for Robust Speech Recognition

  • Kim, Dong-Hyun;Yook, Dong-Suk
    • ETRI Journal
    • /
    • v.31 no.4
    • /
    • pp.454-456
    • /
    • 2009
  • The maximum likelihood linear spectral transformation (ML-LST) using a numerical iteration method has been previously proposed for robust speech recognition. The numerical iteration method is not appropriate for real-time applications due to its computational complexity. In order to reduce the computational cost, the objective function of the ML-LST is approximated and a closed-form solution is proposed in this paper. It is shown experimentally that the proposed closed-form solution for the ML-LST can provide rapid speaker and environment adaptation for robust speech recognition.

GMM based Nonlinear Transformation Methods for Voice Conversion

  • Vu, Hoang-Gia;Bae, Jae-Hyun;Oh, Yung-Hwan
    • Proceedings of the KSPS conference
    • /
    • 2005.11a
    • /
    • pp.67-70
    • /
    • 2005
  • Voice conversion (VC) is a technique for modifying the speech signal of a source speaker so that it sounds as if it is spoken by a target speaker. Most previous VC approaches used a linear transformation function based on GMM to convert the source spectral envelope to the target spectral envelope. In this paper, we propose several nonlinear GMM-based transformation functions in an attempt to deal with the over-smoothing effect of linear transformation. In order to obtain high-quality modifications of speech signals our VC system is implemented using the Harmonic plus Noise Model (HNM)analysis/synthesis framework. Experimental results are reported on the English corpus, MOCHA-TlMlT.

  • PDF

A Study on Linear Spectral Mixing Model for Hyperspectral Imagery with Geometric Method (기하학적 기법을 이용한 하이퍼스펙트럴 영상의 Linear Spectral Mixing모델에 관한 연구)

  • 장은석;김대성;김용일
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.11a
    • /
    • pp.23-29
    • /
    • 2003
  • Detection in remotely sensed images can be conducted spatially, spectrally or both [2]. If the images have high spatial resolution, materials can be detected by using spatial and spectral information, unless we can't see the object embedded in a pixel. In this paper, we intend to solve the limit of spatial resolution by using the hyperspectral image which has high spectral resolution. Therefore, the Linear Spectral Mixing(LSM) Model which is sub-pixel detection algorithm is used to solve this problem. To find class Endmembers, we applied Geometric Model with MNF(Minimum Noise Fraction) transformation. From the result of sub-pixel detection algorithm, we can see the detection of water is satisfied and the object shape cannot be extracted but the possibility of material existence can be identified.

  • PDF

Spectral Feature Transformation for Compensation of Microphone Mismatches

  • Jeong, So-Young;Oh, Sang-Hoon;Lee, Soo-Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.4E
    • /
    • pp.150-154
    • /
    • 2003
  • The distortion effects of microphones have been analyzed and compensated at mel-frequency feature domain. Unlike popular bias removal algorithms a linear transformation of mel-frequency spectrum is incorporated. Although a diagonal matrix transformation is sufficient for medium-quality microphones, a full-matrix transform is required for low-quality microphones with severe nonlinearity. Proposed compensation algorithms are tested with HTIMIT database, which resulted in about 5 percents improvements in recognition rate over conventional CMS algorithm.

Linear Spectral Method for Simulating the Generation of Regular Waves by a Moving Bottom in a 3-dimensional Space (3차원 공간에서 바닥의 움직임에 의한 규칙파의 생성을 모의할 수 있는 선형 스펙트럼법)

  • Jae-Sang Jung;Changhoon Lee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.2
    • /
    • pp.70-79
    • /
    • 2024
  • In this study, we introduce a linear spectral method capable of simulating wave generation and transformation caused by a moving bottom in a 3-dimensional space. The governing equations are linear dynamic free-surface boundary conditions and linear kinematic free-surface boundary conditions, which are solved in Fourier space. Solved velocity potential and free-surface displacement should satisfy continuity equation and kinematic bottom boundary condition. For numerical analysis, a 4th order Runge-Kutta method was utilized to analyze the time integral. The results obtained in Fourier space can be converted into velocity potential and free-surface displacement in a real space using inverse Fourier transform. Regular waves generated by various types of moving bottoms were simulated with the linear spectral method. Additionally, obliquely generated regular waves using specified bottom movements were simulated. The results obtained from the spectral method were compared to analytical solutions, showing good agreement between the two.

ON CLENSHAW-CURTIS SPECTRAL COLLOCATION METHOD FOR VOLTERRA INTEGRAL EQUATIONS

  • CHAOLAN, HUANG;CHUNHUA, FANG;JIANYU, WANG;ZHENGSU, WAN
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.5_6
    • /
    • pp.983-993
    • /
    • 2022
  • The main purpose of this paper is to solve the second kind Volterra integral equations by Clenshaw-Curtis spectral collocation method. First of all, we can transform the integral interval from [-1, x] to [-1, 1] through a simple linear transformation, and discretize the integral term in the equation by Clenshaw-Curtis quadrature formula to obtain the collocation equations. Then we provide a rigorous error analysis for the proposed method. At last, several numerical example are used to verify the results of theoretical analysis.

Partial Spectrum Detection and Super-Gaussian Window Function for Ultrahigh-resolution Spectral-domain Optical Coherence Tomography with a Linear-k Spectrometer

  • Hyun-Ji, Lee;Sang-Won, Lee
    • Current Optics and Photonics
    • /
    • v.7 no.1
    • /
    • pp.73-82
    • /
    • 2023
  • In this study, we demonstrate ultrahigh-resolution spectral-domain optical coherence tomography with a 200-kHz line rate using a superluminescent diode with a -3-dB bandwidth of 100 nm at 849 nm. To increase the line rate, a subset of the total number of camera pixels is used. In addition, a partial-spectrum detection method is used to obtain OCT images within an imaging depth of 2.1 mm while maintaining ultrahigh axial resolution. The partially detected spectrum has a flat-topped intensity profile, and side lobes occur after fast Fourier transformation. Consequently, we propose and apply the super-Gaussian window function as a new window function, to reduce the side lobes and obtain a result that is close to that of the axial-resolution condition with no window function applied. Upon application of the super-Gaussian window function, the result is close to the ultrahigh axial resolution of 4.2 ㎛ in air, corresponding to 3.1 ㎛ in tissue (n = 1.35).

Normalization of Spectral Magnitude and Cepstral Transformation for Compensation of Lombard Effect (롬바드 효과의 보정을 위한 스펙트럼 크기의 정규화와 켑스트럼 변환)

  • Chi, Sang-Mun;Oh, Yung-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.83-92
    • /
    • 1996
  • This paper describes Lombard effect compensation and noise suppression so as to reduce speech recognition error in noisy environments. Lombard effect is represented by the variation of spectral envelope of energy normalized word and the variation of overall vocal intensity. The variation of spectral envelope can be compensated by linear transformation in cepstral domain. The variation of vocal intensity is canceled by spectral magnitude normalization. Spectral subtraction is use to suppress noise contamination, and band-pass filtering is used to emphasize dynamic features. To understand Lombard effect and verify the effectiveness of the proposed method, speech data are collected in simulated noisy environments. Recognition experiments were conducted with contamination by noise from automobile cabins, an exhibition hall, telephone booths in down town, crowded streets, and computer rooms. From the experiments, the effectiveness of the proposed method has been confirmed.

  • PDF

NUMERICAL SIMULATION OF TWO-DIMENSIONAL FREE-SURFACE FLOW AND WAVE TRANSFORMATION OVER CONSTANT-SLOPE BOTTOM TOPOGRAPHY

  • DIMAKOPOULOS AGGELOS S;DIMAS ATHANASSIOS A
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.09b
    • /
    • pp.842-845
    • /
    • 2005
  • A method for the numerical simulation of two-dimensional free-surface flow resulting from the propagation of regular gravity waves over topography with arbitrary bottom shape is presented. The method is based on the numerical solution of the Euler equations subject to the fully nonlinear free-surface boundary conditions and the appropriate bottom, inflow and outflow conditions using a hybrid finite-differences and spectral-method scheme. The formulation includes a boundary-fitted transformation, and is suitable for extension to incorporate large-eddy simulation (LES) and large-wave simulation (LWS) terms for turbulence and breaking wave modeling, respectively. Results are presented for the simulation of the free-surface flow over two different bottom topographies, with constant slope values of 1:10 and 1:20, two different inflow wave lengths and two different inflow wave heights. An absorption outflow zone is utilized and the results indicate minimum wave reflection from the outflow boundary. Over the bottom slope, lengths of waves in the linear regime are modified according to linear theory dispersion, while wave heights remain more or less unchanged. For waves in the nonlinear regime, wave lengths are becoming shorter, while the free surface elevation deviates from its initial sinusoidal shape.

  • PDF