• Title/Summary/Keyword: linear span

Search Result 273, Processing Time 0.028 seconds

Genetic Mixed Effects Models for Twin Survival Data

  • Ha, Il-Do;Noh, Maengseok;Yoon, Sangchul
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.3
    • /
    • pp.759-771
    • /
    • 2005
  • Twin studies are one of the most widely used methods for quantifying the influence of genetic and environmental factors on some traits such as a life span or a disease. In this paper we propose a genetic mixed linear model for twin survival time data, which allows us to separate the genetic component from the environmental component. Inferences are based upon the hierarchical likelihood (h-likelihood), which provides a statistically efficient and simple unified framework for various random-effect models. We also propose a simple and fast computation method for analyzing a large data set on twin survival study. The new method is illustrated to the survival data in Swedish Twin Registry. A simulation study is carried out to evaluate the performance.

Global Search for Optimal Geometric Path amid Obstacles Considering Manipulator Dynamics (로봇팔의 동역학을 고려한 장애물 속에서의 최적 기하학적 경로에 대한 전역 탐색)

  • 박종근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1133-1137
    • /
    • 1995
  • This paper presents a numerical method of the global search for an optimal geometric path for a manipulator arm amid obstacles. Finite term quintic B-splines are used to describe an arbitrary point-to-point manipulator motion with fixed moving time. The coefficients of the splines span a linear vector space, a point in which uniquely represents the manipulator motion. All feasible geometric paths are searched by adjusting the seed points of the obstacle models in the penetration growth distances. In the numerical implementation using nonlinear programming, the globally optimal geometric path is obtained for a spatial 3-link(3-revolute joints) manipulator amid several hexahedral obstacles without simplifying any dynamic or geometric models.

  • PDF

Buckling characteristics and static studies of multilayered magneto-electro-elastic plate

  • Kiran, M.C.;Kattimani, S.C.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.751-763
    • /
    • 2017
  • This article deals with the buckling behaviour of multilayered magneto-electro-elastic (MEE) plate subjected to uniaxial and biaxial compressive (in-plane) loads. The constitutive equations of MEE material are used to derive a finite element (FE) formulation involving the coupling between electric, magnetic and elastic fields. The displacement field corresponding to first order shear deformation theory (FSDT) has been employed. The in-plane stress distribution within the MEE plate existing due to the enacted force is considered to be equivalent to the applied in-plane compressive load in the pre-buckling range. The same stress distribution is used to derive the potential energy functional. The non-dimensional critical buckling load is accomplished from the solution of allied linear eigenvalue problem. Influence of stacking sequence, span to thickness ratio, aspect ratio, load factor and boundary condition on critical buckling load and their corresponding mode shape is investigated. In addition, static deflection of MEE plate under the sinusoidal and the uniformly distributed load has been studied for different stacking sequences and boundary conditions.

A Study on the Welding Distortion at the FCA Intermittent Fillet Weldment of Thin plate (박판 단속 Fillet 용접부의 변형 특성에 관한 연구)

  • Sin, Dae-Hui;Sin, Sang-Beom;Lee, Ju-Seong
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.51-53
    • /
    • 2006
  • The purpose of this study is to establish the predictive equation of angular distortion and longitudinal shrinkage force at the intermittent fillet weldment using FEA and experiment. The angular distortion and shrinkage force of the intermittent fillet weldment linearly increases with an increase in the ratio of weld length(Lw) to weld span(Ls). Based on the results, The predictive equation of distortion at the intermittent fillet weldment was defined as a linear function of Lw/Ls and the predictive equation of the distortion for continuous fillet weldment.

  • PDF

Software for application of Newton-Raphson method in estimation of strains in prestressed concrete girders

  • Gocic, Milan;Sadovic, Enis
    • Computers and Concrete
    • /
    • v.10 no.2
    • /
    • pp.121-133
    • /
    • 2012
  • Structures suffer from damages in their lifetime due to time-dependant effects, such as fatigue, creep and shrinkage, which can be expressed by concrete strains. These processes could be seen in the context of strain estimation of pre-stressed structures in two phases by using numerical methods. Their aim is checking and validating existing code procedures in determination of deformations of pre-tensioned girders by solving a system of nonlinear equations with strains as unknown parameters. This paper presents an approach based on the Newton-Raphson method for obtaining the stresses and strains in middle span section of pre-stressed girders according the equilibrium state.

Buckling Loads and Post-Buckling Behavio of Cantilever Column with Constant Volume (일정체적 캔틸레버 기둥의 좌굴하중 및 후좌굴 거동)

  • Lee Seung-Woo;Lee Tae-Eun;Kim Gwon-Sik;Lee Byoung-Koo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.935-940
    • /
    • 2006
  • Numerical methods are developed for solving the elastica and buckling load of cantilever column with constant volume, subjected to a compressive end load. The linear, parabolic and sinusoidal tapers with the regular polygon cross-sections are considered, whose material volume and span length are always held constant. The differential equations governing the elastica of buckled column are derived. The Runge-Kutta method is used to integrate the differential equations, and the Regula-Falsi method is used to determine the horizontal deflection at free end and the buckling load, respectively. The numerical methods developed herein for computing the elastica and the buckling loads of the columns are found to be efficient and reliable.

  • PDF

Smart Control Techniques for Vibration Suppression of Stay Cable (사장 케이블 제진을 위한 스마트 제진 기법)

  • Jung Hyung-Jo;Park Chul-Min;Cho Sang-Won;Lee In-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.264-271
    • /
    • 2006
  • Stay cables, such as used in cable-stayed bridges, are prone to vibration due to their low inherent damping characteristics. It has been reported that a semiactive control system using MR dampers could potentially achieve both the better performance compared to a passive control system and the adaptability with few of the detractions. However, a control system including a power supply, a controller and sensors is required to improve the control performance of MR dampers. This complicated control system is not effective to most of large civil structures such as long-span bridges and high-rise buildings. This paper proposes a smart damping system which consists of an MR damper and the electromagnetic induction (EMI) part that is considered as an external power source to the MR damper. The control performance of the proposed damping system has been compared with that of the passive-type control systems employing an MR damper and a linear viscous damper.

  • PDF

Current Collection of Catenary System with Time-Varying Stiffness (시변강성 가선계의 집전성능)

  • 최연선
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.3
    • /
    • pp.131-138
    • /
    • 2000
  • The design of current collection system of high speed train requires the fundamental understandings for the dynamic characteristics of catenary system and pantograph. The stiffness of catenary system of high speed train has the varying characteristics for the change of contact point with pantograph, since the supporting pole and hanger make the different boundary conditions for the up-down stiffness of a trolley wire. The variation of stiffness results in Mathiue equation, which characterizes the stability of the system. However, the two-term variation of the stiffness due to span length and hanger distance cannot be solved analytically. In this paper, the stiffness variations are calculated and the physical reasoning of linear model and one term Mathieu equation are reviewed. And the numerical analysis for the two-term variation of the stiffness is done for the several design parameters of pantograph.

  • PDF

Analyses of axial forces and displacements for turnout on the bridge (교량 상 분기기 축력 및 변위해석)

  • Kim, In-Jae;Kim, Jeong-Il;Yang, Shin-Choo;Han, Sang-Chul
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.311-316
    • /
    • 2007
  • The improvement of speed and ride comfort requires a very horizontally and vertically rigid and non-flexible alignment. It is inevitable to construct many bridges depending on the topography of landscapes and obliged to lay turnouts on the bridges. In that case, special considerations have to be taken into account, i.e. permissible stresses of turnout components and limitations of displacements of bridge and turnouts. In this studies, numerical analyses for turnout/bridge interaction are carried out using commercial program LUSAS. The target of analytical model is the turnout layed near Pyeongrae-Hopyeng station on Kyeongchun line. The lead rail, stock rails, and the bridge are modelled using beam elements. Fasteners and ballast resistances are modelled using bi-linear spring elements. The turnout behaviors are investigated by varying the parameters such as span length of bridge, spring coefficients, and thermal loads.

  • PDF

Destructive Load Testing of Prestrissed Concrete Girder Bridge (PSC 거더교의 파괴실험)

  • Oh, Byung-Hwan;Kim Kwang-Soo;Lew, Young;You, Dong-Woo;Kim, Do-Kyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.470-475
    • /
    • 2000
  • This research covers the resting of precast/prestressed concrete I-Girder bridge. The research was designed to examine processes for improving the condition evaluation and rating of prestressed concrete bridge. To establish procedures that allow for the full utilization of prestressed concrete bridge capacity, a 28-year old sample was loaded to failure in site. The bridge was constructed with 12 spans, and girders of each span were simply supported. At each loading stage, the deflections, reinforcement strains, prestressing wire strains and concrete strains were examined. Failure behavior was analyzed, and failure load was also evaluated. The test results wee compared to the analytical results from the non-linear finite element analysis.

  • PDF