• Title/Summary/Keyword: linear span

Search Result 273, Processing Time 0.027 seconds

Approximate Solution for In-Plane Elastic Buckling of Shallow Parabolic Arches (낮은 포물선 아치의 탄성 면내좌굴에 관한 근사식)

  • Moon, Ji Ho;Yoon, Ki Yong;Yi, Jong Won;Lee, Hak Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.4
    • /
    • pp.427-436
    • /
    • 2006
  • The classical buckling theory assumes that prebuckling behavior is linear and that the effect of prebuckling deformations on buckling can be ignored. However, when the rise to span ratio decreases, prebuckling deformation cannot be ignored and the symetrical buckling strength can be smaler than the asymetrical buckling strength. Finally, arches can fail due to snap-through buckling. This paper investigates the non-linear behavior and strength of pin-ended parabolic shallow arches using the non-linear governing differential equation of shallow arches. These results were compared with the solution for the symmetrical buckling load of pin-ended parabolic shallow arches was suggested.

Linear system parameter as an indicator for structural diagnosis of short span bridges

  • Kim, Chul-Woo;Isemoto, Ryo;Sugiura, Kunitomo;Kawatani, Mitsuo
    • Smart Structures and Systems
    • /
    • v.11 no.1
    • /
    • pp.1-17
    • /
    • 2013
  • This paper intended to investigate the feasibility of bridge health monitoring using a linear system parameter of a time series model identified from traffic-induced vibrations of bridges through a laboratory moving vehicle experiment on scaled model bridges. This study considered the system parameter of the bridge-vehicle interactive system rather than modal ones because signals obtained under a moving vehicle are not the responses of the bridge itself but those of the interactive system. To overcome the shortcomings of modal parameter-based bridge diagnosis using a time series model, this study considered coefficients of Autoregressive model (AR coefficients) as an early indicator of anomaly of bridges. This study also investigated sensitivity of AR coefficients in detecting anomaly of bridges. Observations demonstrated effectiveness of using AR coefficients as an early indicator for anomaly of bridges.

Linear elastic and limit state solutions of beam string structures by the Ritz-method

  • Xue, Weichen;Liu, Sheng
    • Structural Engineering and Mechanics
    • /
    • v.35 no.1
    • /
    • pp.67-82
    • /
    • 2010
  • The beam string structure (BSS) has been widely applied in large span roof structures, while no analytical solutions of BSS were derived for it in the existing literature. In the first part of this paper, calculation formulas of displacement and internal forces were obtained by the Ritz-method for the most commonly used arc-shaped BSS under the vertical uniformly distributed load and the prestressing force. Then, the failure mode of BSS was proposed based on the static equilibrium. On condition the structural stability was reliable, BSS under the uniformly distributed load would fail by tensile strength failure of the string, and the beam remained in the elastic or semi-plastic range. On this basis, the limit load of BSS was given in virtue of the elastic solutions. In order to verify the linear elastic and limit state solutions proposed in this paper, three BSS modal were tested and the corresponding elastoplastic large deformation analysis was performed by the ANSYS program. The proposed failure mode of BSS was proved to be correct, and the analytical results for the linear elastic and limit state were in good agreement with the experimental and FEM results.

Recommendation for the modelling of 3D non-linear analysis of RC beam tests

  • Sucharda, Oldrich;Konecny, Petr
    • Computers and Concrete
    • /
    • v.21 no.1
    • /
    • pp.11-20
    • /
    • 2018
  • The possibilities of non-linear analysis of reinforced-concrete structures are under development. In particular, current research areas include structural analysis with the application of advanced computational and material models. The submitted article aims to evaluate the possibilities of the determination of material properties, involving the tensile strength of concrete, fracture energy and the modulus of elasticity. To evaluate the recommendations for concrete, volume computational models are employed on a comprehensive series of tests. The article particularly deals with the issue of the specific properties of fracture-plastic material models. This information is often unavailable. The determination of material properties is based on the recommendations of Model Code 1990, Model Code 2010 and specialized literature. For numerical modelling, the experiments with the so called "classic" concrete beams executed by Bresler and Scordelis were selected. It is also based on the series of experiments executed by Vecchio. The experiments involve a large number of reinforcement, cross-section and span variants, which subsequently enabled a wider verification and discussion of the usability of the non-linear analysis and constitutive concrete model selected.

Experimental and Numerical Assessment of the Service Behaviour of an Innovative Long-Span Precast Roof Element

  • Lago, Bruno Dal
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.261-273
    • /
    • 2017
  • The control of the deformative behaviour of pre-stressed concrete roof elements for a satisfactory service performance is a main issue of their structural design. Slender light-weight wing-shaped roof elements, typical of the European heritage, are particularly sensitive to this problem. The paper presents the results of deformation measurements during storage and of both torsional-flexural and purely flexural load tests carried out on a full-scale 40.5 m long innovative wing-shaped roof element. An element-based simplified integral procedure that de-couples the evolution of the deflection profile with the progressive shortening of the beam is adopted to catch the experimental visco-elastic behaviour of the element and the predictions are compared with normative close-form solutions. A linear 3D fem model is developed to investigate the torsional-flexural behaviour of the member. A mechanical non-linear beam model is used to predict the purely flexural behaviour of the roof member in the pre- and post-cracking phases and to validate the loss prediction of the adopted procedure. Both experimental and numerical results highlight that the adopted analysis method is viable and sound for an accurate simulation of the service behaviour of precast roof elements.

Measurements of Endwall Heat(Mass) Transfer Coefficient in a Linear Turbine Cascade Using Naphthalene Sublimation Technique (나프탈렌승화법을 이용한 터빈 익렬 끝벽에서의 열(물질)전달계수 측정)

  • Lee, Sang-U;Jeon, Sang-Bae;Park, Byeong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.356-365
    • /
    • 2001
  • Heat (mass) transfer characteristics have been investigated on the endwall of a large-scale linear turbine cascade. Its profile is based on the mid-span of the first-stage rotor blade in a industrial gas turbine. By using the naphthalene sublimation technique, local heat (mass) transfer coefficients are measured for two different free-stream turbulence intensities of 1.3% and 4.7%. The results show that local heat (mass) transfer Stanton number is widely varied on the endwall, and its distribution depends strongly on the three-dimensional vortical flows such as horseshoe vortices, passage vortex, and corner vortices. From this experiment, severe heat loads are found on the endwall near the blade suction side as well as near the leading and trailing edges of the blade. In addition, the effect of the free-stream turbulence on the heat (mass) transfer is also discussed in detail.

Non-linear stability analysis of a hybrid barrel vault roof

  • Cai, Jianguo;Zhou, Ya;Xu, Yixiang;Feng, Jian
    • Steel and Composite Structures
    • /
    • v.14 no.6
    • /
    • pp.571-586
    • /
    • 2013
  • This paper focuses on the buckling capacity of a hybrid grid shell. The eigenvalue buckling, geometrical non-linear elastic buckling and elasto-plastic buckling analyses of the hybrid structure were carried out. Then the influences of the shape and scale of imperfections on the elasto-plastic buckling loads were discussed. Also, the effects of different structural parameters, such as the rise-to-span ratio, beam section, area and pre-stress of cables and boundary conditions, on the failure load were investigated. Based on the comparison between elastic and elasto-plastic buckling loads, the effect of material non-linearity on the stability of the hybrid barrel vault is found significant. Furthermore, the stability of a hybrid barrel vault is sensitive to the anti-symmetrical distribution of loads. It is also shown that the structures are highly imperfection sensitive which can greatly reduce their failure loads. The results also show that the support conditions pose significant effect on the elasto-plastic buckling load of a perfect hybrid structure.

Estimating dose-response curves using splines: a nonparametric Bayesian knot selection method

  • Lee, Jiwon;Kim, Yongku;Kim, Young Min
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.3
    • /
    • pp.287-299
    • /
    • 2022
  • In radiation epidemiology, the excess relative risk (ERR) model is used to determine the dose-response relationship. In general, the dose-response relationship for the ERR model is assumed to be linear, linear-quadratic, linear-threshold, quadratic, and so on. However, since none of these functions dominate other functions for expressing the dose-response relationship, a Bayesian semiparametric method using splines has recently been proposed. Thus, we improve the Bayesian semiparametric method for the selection of the tuning parameters for splines as the number and location of knots using a Bayesian knot selection method. Equally spaced knots cannot capture the characteristic of radiation exposed dose distribution which is highly skewed in general. Therefore, we propose a nonparametric Bayesian knot selection method based on a Dirichlet process mixture model. Inference of the spline coefficients after obtaining the number and location of knots is performed in the Bayesian framework. We apply this approach to the life span study cohort data from the radiation effects research foundation in Japan, and the results illustrate that the proposed method provides competitive curve estimates for the dose-response curve and relatively stable credible intervals for the curve.

Non-linear time-dependent post-elastic analysis of suspended cable considering creep effect

  • Kmet, S.;Tomko, M.;Brda, J.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.2
    • /
    • pp.197-222
    • /
    • 2006
  • In this paper, the non-linear time-dependent closed-form, discrete and combined solutions for the post-elastic response of a geometrically and physically non-linear suspended cable to a uniformly distributed load considering the creep effects, are presented. The time-dependent closed-form method for the particularly straightforward determination of a vertical uniformly distributed load applied over the entire span of a cable and the accompanying deflection at time t corresponding to the elastic limit and/or to the elastic region, post-elastic and failure range of a suspended cable is described. The actual stress-strain properties of steel cables as well as creep of cables and their rheological characteristics are considered. In this solution, applying the Irvine's theory, the direct use of experimental data, such as the actual stress-strain and strain-time properties of high-strength steel cables, is implemented. The results obtained by the closed-form solution, i.e., a load corresponding to the elastic limit, post-elastic and failure range at time t, enable the direct use in the discrete non-linear time-dependent post-elastic analysis of a suspended cable. This initial value of load is necessary for the non-linear time-dependent elastic and post-elastic discrete analysis, concerning incremental and iterative solution strategies with tangent modulus concept. At each time step, the suspended cable is analyzed under the applied load and imposed deformations originated due to creep. This combined time-dependent approach, based on the closed-form solution and on the FEM, allows a prediction of the required load that occurs in the post-elastic region. The application of the described methods and derived equations is illustrated by numerical examples.

Temperature effect analysis of a long-span cable-stayed bridge based on extreme strain estimation

  • Yang, Xia;Zhang, Jing;Ren, Wei-Xin
    • Smart Structures and Systems
    • /
    • v.20 no.1
    • /
    • pp.11-22
    • /
    • 2017
  • The long-term effect of ambient temperature on bridge strain is an important and challenging problem. To investigate this issue, one year data of strain and ambient temperature of a long-span cable-stayed bridge is studied in this paper. The measured strain-time history is decomposed into two parts to obtain the strains due to vehicle load and temperature alone. A linear regression model between the temperature and the strain due to temperature is established. It is shown that for every $1^{\circ}C$ increase in temperature, the stress is increased by 0.148 MPa. Furthmore, the extreme value distributions of the strains due to vehicle load, temperature and the combination effect of them during the remaining service period are estimated by the average conditional exceedance rate approach. This approach avoids the problem of declustering of data to ensure independence. The estimated results demonstrate that the 95% quantile of the extreme strain distribution due to temperature is up to $1.488{\times}10^{-4}$ which is 2.38 times larger than that due to vehicle load. The study also indicates that the estimated extreme strain can reflect the long-term effect of temperature on bridge strain state, which has reference significance for the reliability estimation and safety assessment.