• 제목/요약/키워드: linear series

검색결과 1,279건 처리시간 0.03초

새로운 태양전지 모델의 파라미터 추출법 (A Novel Parameter Extraction Method for the Solar Cell Model)

  • 김욱;김상현;이종학;최우진
    • 전력전자학회논문지
    • /
    • 제14권5호
    • /
    • pp.372-378
    • /
    • 2009
  • 태양광 발전시스템의 설치 용량이 증가함에 따라 시스템 효율을 개선하기 위한 연구가 활발히 진행되고 있다. 고성능 시스템의 설계 및 시험을 위해서는 태양전지의 모델링을 바탕으로 태양전지의 물리적 특성에 관해 정확히 이해하는 것이 중요하다. 그러나 태양전지의 모델은 다수의 파라미터가 얽힌 비선형 형태이며, 모델식의 파라미터 값을 얻기 위한 기존의 방식에서는 오차를 동반하는 실제와 다른 가정을 전제로 하므로 결과적으로 추출된 파라미터의 정확도가 저하되게 되는 단점이 있다. 따라서 본 논문에서는 제조사가 표준상태에서 측정하여 공개하는 태양전지의 I-V 커브로부터 다이오드의 이상계수와 역포화 전류를 구하고 이로부터 저항 성분이 없는 이상적인 태양전지의 I-V 커브를 도출한 뒤, 실측된 I-V 커브와 차이를 최소화하는 직·병렬 저항값을 추출하는 새로운 방식을 제안한다. 기존의 방식과 제안된 방식의 모델링을 통하여 얻은 파라미터를 이용해 구현한 I-V 커브와 실측 I-V 커브와의 상관관계를 최소자승법을 통해 계산함으로써 제안된 방법의 유용함을 증명하였다.

HRV 신호의 선형 및 비선형 분석을 이용한 마취심도 평가 (Estimation on the Depth of Anesthesia using Linear and Nonlinear Analysis of HRV)

  • 예수영;백승완;김혜진;김태균;전계록
    • 한국전기전자재료학회논문지
    • /
    • 제23권1호
    • /
    • pp.76-85
    • /
    • 2010
  • In general, anesthetic depth is evaluated by experience of anesthesiologist based on the changes of blood pressure and pulse rate. So it is difficult to guarantee the accuracy in evaluation of anesthetic depth. The efforts to develop the objective index for evaluation of anesthetic depth were continued but there was few progression in this area. Heart rate variability provides much information of autonomic activity of cardiovascular system and almost all anesthetics depress the autonomic activity. Novel monitoring system which can simply and exactly analyze the autonomic activity of cardiovascular system will provide important information for evaluation of anesthetic depth. We investigated the anesthetic depth as following 7 stages. These are pre-anesthesia, induction, skin incision, before extubation, after extubation, Post-anesthesia. In this study, temporal, frequency and chaos analysis method were used to analyze the HRV time series from electrocardiogram signal. There were NN10-NN50, mean, SDNN and RMS parameter in the temporal method. In the frequency method, there are LF and HF and LF/HF ratio, 1/f noise, alphal and alpha2 of DFA analysis parameter. In the chaos analysis, there are CD, entropy and LPE. Chaos analysis method was valuable to estimate the anesthetic depth compared with temporal and frequency method. Because human body was involved the choastic character.

Estimation of Soil Moisture Content in Corn Field Using Microwave Scatterometer Data

  • Kim, Yihyun;Hong, Sukyoung;Lee, Kyoungdo;Na, Sangil;Jung, Gunho
    • 한국토양비료학회지
    • /
    • 제47권4호
    • /
    • pp.235-241
    • /
    • 2014
  • A ground-based microwave scatterometer has an advantage for monitoring soil moisture content using multi-polarization, multi-frequencies and various incidence angles. In this paper, ground-based multi-frequency (L-, C-, and X-band) polarimetric scatterometer system capable of making observations every 10 min was used to monitor the soil moisture conditions in a corn field over an entire growth cycle. Measurements of volumetric soil moisture were obtained and their relationships to the backscatter observations were examined. Time series of soil moisture content was not corresponding with backscattering coefficient pattern over the whole growth stage, although it increased until early July (Day Of Year, DOY 160). We examined the relationship between the backscattering coefficients from each band and soil moisture content of the field. Backscattering coefficients for all bands were not correlated with soil moisture content when considered over the entire stage ($r{\leq}0.48$). However, L-band Horizontal transmit and Horizontal receive polarization (HH) had a good correlation with soil moisture ($r=0.85^{**}$) when LAI was lower than 2. Prediction equations for soil moisture were developed using the L-HH data. Relation between L-HH and soil moisture shows linear pattern and related with soil moisture content ($R^2=0.77$). Results from this study show that backscattering coefficients of microwave scatterometer appear to be effective to estimate soil moisture content in the field level.

Predicting Daily Nutrient Water Consumption by Strawberry Plants in a Greenhouse Environment

  • Sathishkumar, VE;Lee, Myeong-Bae;Lim, Jong-Hyun;Shin, Chang-Sun;Park, Chang-Woo;Cho, Yong Yun
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 추계학술발표대회
    • /
    • pp.581-584
    • /
    • 2019
  • Food consumption is growing worldwide every year owing to a growing population. Hence, the increasing population needs the production of sufficient and good quality food products. Strawberry is one of the world's most famous fruit. To obtain the highest strawberry output, we worked with three strawberry varieties supplied with three kinds of nutrient water in a greenhouse and with the outcome of the strawberry production, the highest yielding strawberry variety is detected. This Study uses the nutrient water consumed every day by the highest yielding strawberry variety. The atmospheric temperature, humidity and CO2 levels within the greenhouse are identified and used for the prediction, since the water consumption by any plant depends primarily on weather conditions. Machine learning techniques show successful outcomes in a multitude of issues including time series and regression issues. In this study, daily nutrient water consumption of strawberry plants is predicted using machine learning algorithms is proposed. Four Machine learning algorithms are used such as Linear Regression (LR), K nearest neighbour (KNN), Support Vector Machine with Radial Kernel (SVM) and Gradient Boosting Machine (GBM). Gradient Boosting System produces the best results.

Long term structural health monitoring for old deteriorated bridges: a copula-ARMA approach

  • Zhang, Yi;Kim, Chul-Woo;Zhang, Lian;Bai, Yongtao;Yang, Hao;Xu, Xiangyang;Zhang, Zhenhao
    • Smart Structures and Systems
    • /
    • 제25권3호
    • /
    • pp.285-299
    • /
    • 2020
  • Long term structural health monitoring has gained wide attention among civil engineers in recent years due to the scale and severity of infrastructure deterioration. Establishing effective damage indicators and proposing enhanced monitoring methods are of great interests to the engineering practices. In the case of bridge health monitoring, long term structural vibration measurement has been acknowledged to be quite useful and utilized in the planning of maintenance works. Previous researches are majorly concentrated on linear time series models for the measurement, whereas nonlinear dependences among the measurement are not carefully considered. In this paper, a new bridge health monitoring method is proposed based on the use of long term vibration measurement. A combination of the fundamental ARMA model and copula theory is investigated for the first time in detecting bridge structural damages. The concept is applied to a real engineering practice in Japan. The efficiency and accuracy of the copula based damage indicator is analyzed and compared in different window sizes. The performance of the copula based indicator is discussed based on the damage detection rate between the intact structural condition and the damaged structural condition.

Evaluation of Future Climate Change Impact on Streamflow of Gyeongancheon Watershed Using SLURP Hydrological Model

  • Ahn, So-Ra;Ha, Rim;Lee, Yong-Jun;Park, Geun-Ae;Kim, Seong-Joon
    • 대한원격탐사학회지
    • /
    • 제24권1호
    • /
    • pp.45-55
    • /
    • 2008
  • The impact on streamflow and groundwater recharge considering future potential climate and land use change was assessed using SLURP (Semi-distributed Land-Use Runoff Process) continuous hydrologic model. The model was calibrated and verified using 4 years (1999-2002) daily observed streamflow data for a $260.4km^2$ which has been continuously urbanized during the past couple of decades. The model was calibrated and validated with the coefficient of determination and Nash-Sutcliffe efficiency ranging from 0.8 to 0.7 and 0.7 to 0.5, respectively. The CCCma CGCM2 data by two SRES (Special Report on Emissions Scenarios) climate change scenarios (A2 and B2) of the IPCC (Intergovemmental Panel on Climate Change) were adopted and the future weather data was downscaled by Delta Change Method using 30 years (1977 - 2006, baseline period) weather data. The future land uses were predicted by CA (Cellular Automata)-Markov technique using the time series land use data of Landsat images. The future land uses showed that the forest and paddy area decreased 10.8 % and 6.2 % respectively while the urban area increased 14.2 %. For the future vegetation cover information, a linear regression between monthly NDVI (Normalized Difference Vegetation Index) from NOAA/AVHRR images and monthly mean temperature using five years (1998 - 2002) data was derived for each land use class. The future highest NDVI value was 0.61 while the current highest NDVI value was 0.52. The model results showed that the future predicted runoff ratio ranged from 46 % to 48 % while the present runoff ratio was 59 %. On the other hand, the impact on runoff ratio by land use change showed about 3 % increase comparing with the present land use condition. The streamflow and groundwater recharge was big decrease in the future.

Effect of nonlinear elastic foundations on dynamic behavior of FG plates using four-unknown plate theory

  • Nebab, Mokhtar;Atmane, Hassen Ait;Bennai, Riadh;Tahar, Benabdallah
    • Earthquakes and Structures
    • /
    • 제17권5호
    • /
    • pp.447-462
    • /
    • 2019
  • This present paper concerned with the analytic modelling for vibration of the functionally graded (FG) plates resting on non-variable and variable two parameter elastic foundation, based on two-dimensional elasticity using higher shear deformation theory. Our present theory has four unknown, which mean that have less than other higher order and lower theory, and we denote do not require the factor of correction like the first shear deformation theory. The indeterminate integral are introduced in the fields of displacement, it is allowed to reduce the number from five unknown to only four variables. The elastic foundations are assumed a classical model of Winkler-Pasternak with uniform distribution stiffness of the Winkler coefficient (kw), or it is with variables distribution coefficient (kw). The variable's stiffness of elastic foundation is supposed linear, parabolic and trigonometry along the length of functionally plate. The properties of the FG plates vary according to the thickness, following a simple distribution of the power law in terms of volume fractions of the constituents of the material. The equations of motions for natural frequency of the functionally graded plates resting on variables elastic foundation are derived using Hamilton principal. The government equations are resolved, with respect boundary condition for simply supported FG plate, employing Navier series solution. The extensive validation with other works found in the literature and our results are present in this work to demonstrate the efficient and accuracy of this analytic model to predict free vibration of FG plates, with and without the effect of variables elastic foundations.

Different approaches for numerical modeling of seismic soil-structure interaction: impacts on the seismic response of a simplified reinforced concrete integral bridge

  • Dhar, Sreya;Ozcebe, Ali Guney;Dasgupta, Kaustubh;Petrini, Lorenza;Paolucci, Roberto
    • Earthquakes and Structures
    • /
    • 제17권4호
    • /
    • pp.373-385
    • /
    • 2019
  • In this article, different frequently adopted modeling aspects of linear and nonlinear dynamic soil-structure interaction (SSI) are studied on a pile-supported integral abutment bridge structure using the open-source platform OpenSees (McKenna et al. 2000, Mazzoni et al. 2007, McKenna and Fenves 2008) for a 2D domain. Analyzed approaches are as follows: (i) free field input at the base of fixed base bridge; (ii) SSI input at the base of fixed base bridge; (iii) SSI model with two dimensional quadrilateral soil elements interacting with bridge and incident input motion propagating upwards at model bottom boundary (with and without considering the effect of abutment backfill response); (iv) simplified SSI model by idealizing the interaction between structural and soil elements through nonlinear springs (with and without considering the effect of abutment backfill response). Salient conclusions of this paper include: (i) free-field motions may differ significantly from those computed at the base of the bridge foundations, thus put a significant bias on the inertial component of SSI; (ii) conventional modeling of SSI through series of soil springs and dashpot system seems to stay on the safer side under dynamic conditions when one considers the seismic actions on the structure by considering a fully coupled SSI model; (iii) consideration of abutment-backfill in the SSI model positively affects the general response of the bridge, as a result of large passive resistance that may develop behind the abutments.

헝거포드 접근법의 행동주의를 넘어서 (Beyond the Behaviorism Embedded in the Hungerford Approach)

  • 이재영
    • 한국환경교육학회지:환경교육
    • /
    • 제15권1호
    • /
    • pp.68-82
    • /
    • 2002
  • My responses to Kim Kyung-Ok's Critique on my critique on the Hungerford approach can be summarized as follows; First, it was argued that possible confusions and misunderstandings around the concept of behavior in REB were mainly caused by Hungerford himself who has used the word in several different ways, from a bunch of overt actions to almost all kinds of responses including cognitive skills, without any clear operational definition of it for more than 20 years. It seems to be needed for future users of the word, 'Behavior' to Prevent unnecessary confusions by providing their operational definition of it. Second, REB is too ambiguous to be a legitimate goal of environmental education and too outcome-oriented to be a meaningful measure for environmental education research. Anyone who accept REB as a goal of EE or a measure for research should clearly suggest procedures and criteria for judging the environmental responsibility of actions under consideration. Third, the Hungerford approach has begun by realizing the limit of a linear traditional behavior change system and has been evolving toward a complex model with dynamic interactions among/between cognitive variables and affective variables. However, it still has one-way structural orientation toward 'Behavior' with no feedbacks. Addition of some feedback processes would make the model more flexible and realistic. Finally, both the Hines model and the Hungeford model were established based on a series of behavioristic studies including three doctoral dissertations equiped with a list of actions which were prejudged to be environmentally responsible by the researchers, not by the learners. What they were primarily interested in was not how mind functions during the learning processes but how learners' behavior can be effectively changed. Considering uncertainty and complexity associated with environmental problems, a great deal of efforts ought to be made toward more context-based and less normative studies applying cognitive psychology and quantitative approaches.

  • PDF

Analyzing the Effect of Management Strategies on Gum Talha Yield from Acacia Seyal, South Kordofan, Sudan

  • Mohammed, M.H.;Roehle, H.
    • Journal of Forest and Environmental Science
    • /
    • 제27권3호
    • /
    • pp.135-141
    • /
    • 2011
  • The present study was carried out from September 2007 to February 2008 in Umfakarin natural forest reserve, South Kordofan, Sudan. The objective was to analyze the effect of different management strategies on yield of gum talha from Acacia seyal. A total of 493 single target trees were selected, based on their diameters, and assigned to tapping treatments in three different stand densities (making a total of nine treatments per stand density). The treatments are as follows: tapping date with three levels (first of October, 15 October and first of November) and two levels of local tapping tools (sonki, and makmak). Untapped trees were used as control. The first picking of gum was started fifteen days after tapping while the subsequent pickings were done in intervals of fifteen days. Yield per tree throughout the season was obtained by summing up the gum yield from all pickings. Yield throughout the season (from first to the last picking) were analyzed. General linear model (GLM) was used to test the effect of different tapping treatments on the yield of gum talha. Post hoc test after analysis of variance (ANOVA) based on Scheffe test was performed to examine the differences in gum yield as a result of different management strategies. The results showed that tapping has a significant influence on gum yield. Analysis of pick-to-pick yield indicated that only three treatments in dense stand density showed a decreasing pattern while the rest of treatments either have constant or unclear patterns. The results of the present study were based on a single season data and that may underscore the real effect of Acacia seyal stands' management strategies on gum talha yield. Conducting gum yield experiments in permanent trial plots are highly recommended in order to analyze gum yield of seasonal time series.