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Abstract 

 
Food consumption is growing worldwide every year owing to a growing population. Hence, the increasing population 
needs the production of sufficient and good quality food products. Strawberry is one of the world's most famous fruit. 
To obtain the highest strawberry output, we worked with three strawberry varieties supplied with three kinds of 
nutrient water in a greenhouse and with the outcome of the strawberry production, the highest yielding strawberry 
variety is detected. This Study uses the nutrient water consumed every day by the highest yielding strawberry variety. 
The atmospheric temperature, humidity and CO2 levels within the greenhouse are identified and used for the 
prediction, since the water consumption by any plant depends primarily on weather conditions. Machine learning 
techniques show successful outcomes in a multitude of issues including time series and regression issues. In this study, 
daily nutrient water consumption of strawberry plants is predicted using machine learning algorithms is proposed. Four 
Machine learning algorithms are used such as Linear Regression (LR), K nearest neighbour (KNN), Support Vector 
Machine with Radial Kernel (SVM) and Gradient Boosting Machine (GBM). Gradient Boosting System produces the 
best results. 

 
1. Introduction 

In the global economy, agriculture plays a critical 
role. Agrotechnology and precision farming, now also 
called digital farming, emerges as fresh scientific fields 
that use data-intensive methods to boost agricultural 
productivity while minimizing its effect on the 
environment. A multitude of different sensors gives the 
data produced in contemporary agriculture operations 
that enable a clearer knowledge of the operational 
environment (an interaction of dynamic crop, earth and 
weather conditions) and the operation itself (machine 
data), contributing to more precise and quicker decision 
making. In the present, technological advancement, 
such as the use of electronic devices and data 
transmission lead to revolutionary improvements in the 
agricultural working environment. These modifications 
require revised data from production systems and from 
agents and markets involved in production to provide 
decision-making knowledge for production as well as 
for strategic and managerial issues [1]. Together with 
large data technologies and high-performance 
computing, Machine Learning (ML) arises to create 
new possibilities to untangle, quantify and comprehend 
data-intensive processes in agricultural operational 
environments. Among other definitions, ML is the 
scientific field, which gives machines the ability to 
learn without being strictly programmed and 
inexpensive to make decisions. 

Strawberry is one of the world's most famous fruits 
due to its production and nutrient gross value. 
Strawberry cultivation is seen as the key for the 
healthiest growing economy. Because of the elevated 
domestic strawberry demand for every season, the 
greenhouse cultivation is also rising. Since the 
strawberry plant has an entirely shallow root structure 
with branches reaching only about 6 inches long in 
sandy loam clay and because the flower blooms can be 

easily destroyed by summer frosts, proper irrigation is 
highly suggested. Water quality and good location for a 
strawberry bed yield a healthy berries plant for 3-5 
years after that the plants start to decline, at which point 
the bed should be replanted. A bed of 100 plants 
provides about 100 quarters of berries, which is enough 
to provide plenty of healthy berries for a household of 
four.  

2. Related Works 

Commercial strawberry yield details in two districts 
of Norway are researched and compared with 
meteorological data [2]. The findings show that climatic 
factors are more crucial for output during flower 
induction and floral differentiation than conditions 
during flowering and ripening. The authors state that the 
regression method to predict strawberry yield may be 
more useful for strawberries production and marketing. 

A yield prediction equation for the ' Strawberry 
Festival ' is created in [3] to enhance weekly forecasts 
using input variables obtained from floral counts and 
temperature data over two seasons in Florida. 

Strawberries are cultivated from early December to 
late March in west-central Florida [4]. The prime 
harvest, usually from late February to mid-March, takes 
place at the beginning of the season and tends to take 
about 1 month. As the peak harvest advances and the 
temperature increases, fruit starts to shrink and the 
quantity of Soluble Substances Content (SSC) also 
reduces. The primary goal of this research is to assess 
whether peak harvest advancement leads to a 
temperature-independent drop in SSC. The findings 
show that increasing temperature in a subtropical 
system is a significant variable accountable for the late-
season drop of SSC in strawberry fruit. 
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In 69 strawberry plantations, yield components are 
measured [5]. Fruit/hectare yield is positively correlated 
with crowndha count. The number of berries/trusses 
(inflorescence), average berry weight and fruit/truss 
weight are negatively associated with the number of 
trusses/crowns that emerge. Fruit/truss weight is 
positively associated with the number of berries/truss as 
well as the average weight of the berry. As the crown 
count stands for more than 50% of the yield variance, it 
is proposed that the future returns of strawberry 
plantations can be predicted from crown counts during 
the dormant period.  

A modelling strategy for extracting the optimum 
yield curve for strawberry production in Florida that 
enhances farmers gain owing to competition from 
California and Mexico, and delicate market supply price 
responses are presented in [6]. The model incorporates 
Biological as well as financial limitations. Biological 
constraints for Florida output are designed on the 
premise that there are genetic and horticultural 
limitations for potential output enhancement, while 
financial limitations cater to cost modifications in 
response to supply. 

3. Recorded Data and Description 

In this experimentation, we use Greenhouse 
strawberry information from September 2018 to May 
2019 (9 months). The greenhouse has three rows. Each 
row is supplied with different type pf Nutrient water. 
There are three beds in each row. In each bed, one 
variety of strawberry is cultivated. One thousand 
strawberries are planted in each bed. Each bed receives 
nutrient water regularly. Each bed has an inlet and 
outlet for nutrient water. By deducing Output nutrient 
water from Input nutrient water, the average nutrient 
water consumed by each strawberry plant is calculated.  

The readings of temperature, humidity, and CO2 
are obtained for every minute using the sensors inside 
the greenhouse. Calculation of the maximum, minimum, 
average and gap (Maximum - Minimum) for 
temperature, humidity, and CO2 is done. These values 
are associated with the daily consumption of nutrient 
water by the strawberry plants and are used for the 

prediction.  

<Table 1> Data Variables and Description 
Table 1 lists all variables or features or parameters 

and their respective abbreviation and measurement. 

        Fig 1 shows the nutrient water consumed by 
strawberry plants each day from September 2018 
toMay2019. 

 

 
(Fig 1) Nutrient Water Consumption for the period of 

September 2018 to May 2019 

 
(Fig 2) Pairs Plot. Relationship between Water with 

GHMaxTemp, GHMinTemp, GHAveTemp, 
GHTempGap, GHMaxHum, GHMinHum 

Fig 2 and Fig 3 indicate pair plots illustrating the 
correlation between all variables with the Nutrient water 
consumed by the strawberry plant. This figure shows 
the bivariate scatter plots below the diagonal, histogram 
plots along the diagonal and the Kendall correlation 
above it. A correlation of 1 is a total positive correlation, 
-1 is the total negative correlation, and 0 is no 
correlation. For each pair, the linear regression line fits 
are displayed in red. 

Parameters/Features Abbreviation Measurement 
Date Date - 
Water Consumed Water Milli Litres 
Greenhouse Maximum 
Temperature 

GHMaxTemp °C 

Greenhouse Minimum 
Temperature 

GHMinTemp °C 

Greenhouse Average Temperature GHAveTemp °C 
Greenhouse Temperature Gap GHTempGap °C 
Greenhouse Maximum Humidity GHMaxHum % 
Greenhouse Minimum Humidity GHMinHum % 
Greenhouse Average Humidity GHAveHum % 
Greenhouse humidity gap GHHumGap % 
Greenhouse Maximum CO2 Value GHMaxCO2 ppm 
Greenhouse Minimum CO2 Value GHMinCO2 ppm 
Greenhouse Average CO2 Value GHAveCO2 ppm 
Greenhouse CO2 Value Gap GHCO2Gap ppm 
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Fig 2 and Fig 3 shows a positive correlation between 
nutrient water consumption and temperature, 
GHMaxHum and GHHumGap. GHMinHum, 
GHAveHum, GHMaxCO2, GHMinCO2, GHAveCO2, 
and GHCO2Gap are negative correlations. Fig 2 Shows 
also a positive correlation between Water and 
GHMaxTemp (0.36), GHMinTemp, GHAveTemp, and 
GHTempGap. This shows nutrient water consumption 
increases with increase in temperature inside 
Greenhouse. 

 

(Fig 3) Pairs Plot. Relationship between Water with 
GHAveHum, GHHumGap, GHMaxCO2, GHMinCO2, 

GHAveCO2 and GHCO2Gap 

4. Model Selection 

The dataset has 233 entries. The data is splitted into 
the train and the test. The training uses 75% of data and 
testing uses 25% of data.  

 <Table 2> Training and Testing Dataset 

 

       Four machine learning algorithms are used to 
predict nutrient water consumption: Linear Regression, 
K nearest neighbor (KNN), Support Vector Machine 
with Radial Kernel (SVM RBF) and Gradient Boosting 
Machine (GBM). 

        Regression algorithm efficiency is assessed using 
R2, Root Mean Squared Error (RMSE), Mean Absolute 
Error (MAE) and Mean Absolute Percentage Error 
(MAPE) efficiency metrics. Table 3 shows the 
performance outcomes of the four regression models. 
The best-performing model is the model with the 
highest R2 value and the lowest RMSE, MAE and 
MAPE value. 

<Table 3> Model Performances 

As seen from Table 3. GBM has the highest R2 
value of 0.63 and lowest RMSE (42,87), MAE (28.20) 
and MAPE (12.85) value in the train set.  It also has the 
highest R2 of 0.45 and lowest RMSE (47.19), MAE 
(34.79) and MAPE (16.43) value in the test set 
compared to other regression models. 

5. Conclusion 

This research engaged in the development and 
comparison of four machine learning models to predict 
the daily consumption of nutrient water by strawberry 
plants with the Greenhouse Temperature, Humidity and 
CO2 data. Each model is trained using the regularly 
gathered data on nutrient water consumption and 
greenhouse data using four distinct data mining 
algorithms, namely linear regression, K nearest 
neighbor, Support Vector Machine with Radial Kernel 
and Gradient Boosting system. Relative to other 
regression algorithms, the performance of GBM is best. 
This research uses only 9 months' data. Since the data is 
small, Future work is to gather data on nutrient water 
consumption for 4 years and enhance the prediction 
performance. 
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