• 제목/요약/키워드: linear search

검색결과 457건 처리시간 0.022초

Optimized Image-Based Surrogate Endpoints in Targeted Therapies for Glioblastoma: A Systematic Review and Meta-Analysis of Phase III Randomized Controlled Trials

  • Chong Hyun Suh;Ho Sung Kim;Seung Chai Jung;Choong Gon Choi;Sang Joon Kim;Kyung Won Kim
    • Korean Journal of Radiology
    • /
    • 제21권4호
    • /
    • pp.471-482
    • /
    • 2020
  • Objective: We aimed to determine the optimized image-based surrogate endpoints (IBSEs) in targeted therapies for glioblastoma through a systematic review and meta-analysis of phase III randomized controlled trials (RCTs). Materials and Methods: A systematic search of OVID-MEDLINE and EMBASE for phase III RCTs on glioblastoma was performed in December 2017. Data on overall survival (OS) and IBSEs, including progression-free survival (PFS), 6-month PFS (6moPFS), 12-month PFS (12moPFS), median PFS, and objective response rate (ORR) were extracted. Weighted linear regression analysis for the hazard ratio for OS and the hazard ratios or odds ratios for IBSEs was performed. The associations between IBSEs and OS were evaluated. Subgroup analyses according to disease stage (newly diagnosed glioblastoma versus recurrent glioblastoma), types of test treatment, and types of response assessment criteria were performed. Results: Twenty-three phase III RCTs published between 2000 and 2017, including 8387 patients, met the inclusion criteria. OS showed strong correlations with PFS (standardized β coefficient [R] = 0.719), 6moPFS (R = 0.647), and 12moPFS (R = 0.638). OS showed no correlations with median PFS and ORR. In subgroup analysis according to types of therapies, PFS showed the highest correlations with OS in targeted therapies for cell cycle pathways (R = 0.913) and growth factor receptors and their downstream pathways (R = 0.962). 12moPFS showed the highest correlation with OS in antiangiogenic therapy (R = 0.821). The response assessment in neuro-oncology criteria provided higher correlation coefficients between OS and IBSEs than the Macdonald criteria. Conclusion: Overall, PFS is an optimized IBSE in targeted therapies for glioblastoma; however, 12moPFS is optimal in antiangiogenic therapy.

Sleep Duration and Cancer Risk: a Systematic Review and Meta-analysis of Prospective Studies

  • Zhao, Hao;Yin, Jie-Yun;Yang, Wan-Shui;Qin, Qin;Li, Ting-Ting;Shi, Yun;Deng, Qin;Wei, Sheng;Liu, Li;Wang, Xin;Nie, Shao-Fa
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권12호
    • /
    • pp.7509-7515
    • /
    • 2013
  • To assess the risk of cancers associated with sleep duration using meta-analysis of published cohort studies, we performed a comprehensive search using PubMed, Embase and Web of Science through October 2013. We combined hazard ratios (HRs) from individual studies using meta-analysis approaches. A random effect dose-response analysis was used to evaluate the relationship between sleep duration and cancer risk. Subgroup analyses and sensitivity analyses were also performed. Publication bias was evaluated using Funnel plots and Begg's test. A total of 13 cohorts from 12 studies were included in this meta-analysis, which included 723, 337 participants with 15, 156 reported cancer outcomes during a follow-up period ranging from 7.5 to 22 years. The pooled adjusted HRs were 1.06 (95% CI: 0.92, 1.23; P for heterogeneity =0.003) for short sleep duration, 0.91 (95% CI: 0.78, 1.07; P for heterogeneity <0.0001) for long sleep duration. In subgroup analyses stratified by cancer type, long duration of sleep showed an inverse relation with hormone-related cancer (HR=0.79; 95% CI: 0.65, 0.97; P for heterogeneity =0.009) and a greater risk of colorectal cancer (HR=1.29; 95% CI: 1.09, 1.52; P for heterogeneity =0.346). Further meta-analysis on dose-response relationships showed that the relative risks of cancer were 1.00 (95% CI: 0.99, 1.01; P for linear trend=0.9151) for one hour of sleep increment per day, and 1.00 (95% CI: 0.98, 1.01; P for linear trend=0.7749) for one hour of sleep increment per night. No significant dose-response relationship between sleep duration and cancer was found on non-linearity testing (P=0.5053). Our meta-analysis suggests a positive association between long sleep duration and colorectal cancer, and an inverse association with incidence of hormone related cancers like those in the breast. Studies with larger sample size, longer follow-up times, more cancer types and detailed measure of sleep duration are warranted to confirm these results.

플랫폼 기반 비즈니스에 대한 국내 연구동향 및 미래를 위한 가이드라인 (Research Trend and Futuristic Guideline of Platform-Based Business in Korea)

  • 남수현
    • 경영과정보연구
    • /
    • 제39권1호
    • /
    • pp.93-114
    • /
    • 2020
  • 플랫폼은 기존 전통적인 선형적 파이프라인 기반 비즈니스 모델에 대응하는 대안으로 떠오르고 있다. 특히 최근의 4차 산업혁명시대에 효율성 주도의 파이프라인 기반은 조정 주도의 플랫폼 기반으로 변환되어야 한다는 것이 일반적인 인식이다. 플랫폼 성공사례는 애풀, 구글, 아마존, 우버 등에서 쉽게 찾을 수 있다. 그러나 규모가 크지 않은 기업에서는 플랫폼 비즈니스로의 전환 전략을 찾기가 쉽지 않다. 플랫폼 비즈니스의 핵심은 네트워크 효과를 경영활동에 도입하여 활용하는 것이다. 따라서 플랫폼 비즈니스는 경영활동 기능에서 네트워크 효과 관리를 어떻게 할 것인가와 유사하다. 플랫폼 관련 연구는 최근 활발하고 다양하다. 그러나 이 분야의 연구 동향에 대한 연구는 많지 않다. 본 연구의 주요 목적은 최근 국내에서 수행된 플랫폼 관련 연구를 통하여 연구동향을 이해하는 것이다. 이를 위해서 우리는 연구가설과 명제를 제시하였다. 데이터는 연구논문으로 한국학술지인용색인 시스템에서 "플랫폼" 혹은 "platform"을 키워드 속성으로부터 얻었다. 수집된 논문집합은 "경영학" 분야로 국한하여 구성하였다. 선택된 논문들을 대상으로 연구된 플랫폼 요소, 플랫폼 유형, 주요 연구 내용 등에 대해 56개의 논문에 대해 분석을 하였다. 56개의 데이터를 이용하여 탐색적인 연구가설을 검증하였고, 명제를 제안하였다. 본 연구의 시사점은 연구자들에게 연구 영역 중, 많은 연구가 수행되어 온 성숙 영역과 아직 더 많은 연구가 필요한 분야를 제시하였다. 또한 실무자들에게는 파이프라인 비즈니스로부터 플랫폼 기반 비즈니스로 변화를 추구하는 가이드라인을 제시한 것이다. 가이드라인의 핵심은 극대화하기 위해서는 IT플랫폼 시스템을 기반으로 소비자와 공급자 네트워크를 점진적으로 조정하고 관리하여야 한다는 것이다. 본 연구는 데이터 수집과 수집된 데이터의 구분 및 주요 연구내용 등 주관적인 판단 요소가 많아 추론적이 아닌 탐색적 연구로 간주되어야 할 것이다.

Support Vector Regression을 이용한 GARCH 모형의 추정과 투자전략의 성과분석 (Estimation of GARCH Models and Performance Analysis of Volatility Trading System using Support Vector Regression)

  • 김선웅;최흥식
    • 지능정보연구
    • /
    • 제23권2호
    • /
    • pp.107-122
    • /
    • 2017
  • 주식시장의 주가 수익률에 나타나는 변동성은 투자 위험의 척도로서 재무관리의 이론적 모형에서뿐만 아니라 포트폴리오 최적화, 증권의 가격 평가 및 위험관리 등 투자 실무 영역에서도 매우 중요한 역할을 하고 있다. 변동성은 주가 수익률이 평균을 중심으로 얼마나 큰 폭의 움직임을 보이는가를 판단하는 지표로서 보통 수익률의 표준편차로 측정한다. 관찰 가능한 표준편차는 과거의 주가 움직임에서 측정되는 역사적 변동성(historical volatility)이다. 역사적 변동성이 미래의 주가 수익률의 변동성을 예측하려면 변동성이 시간 불변적(time-invariant)이어야 한다. 그러나 대부분의 변동성 연구들은 변동성이 시간 가변적(time-variant)임을 보여주고 있다. 이에 따라 시간 가변적 변동성을 예측하기 위한 여러 계량 모형들이 제안되었다. Engle(1982)은 변동성의 시간 가변적 특성을 잘 반영하는 변동성 모형인 Autoregressive Conditional Heteroscedasticity(ARCH)를 제안하였으며, Bollerslev(1986) 등은 일반화된 ARCH(GARCH) 모형으로 발전시켰다. GARCH 모형의 실증 분석 연구들은 실제 증권 수익률에 나타나는 두터운 꼬리 분포 특성과 변동성의 군집현상(clustering)을 잘 설명하고 있다. 일반적으로 GARCH 모형의 모수는 가우스분포로부터 추출된 자료에서 최적의 성과를 보이는 로그우도함수에 대한 최우도추정법에 의하여 추정되고 있다. 그러나 1987년 소위 블랙먼데이 이후 주식 시장은 점점 더 복잡해지고 시장 변수들이 많은 잡음(noise)을 띠게 됨에 따라 변수의 분포에 대한 엄격한 가정을 요구하는 최우도추정법의 대안으로 인공지능모형에 대한 관심이 커지고 있다. 본 연구에서는 주식 시장의 주가 수익률에 나타나는 변동성의 예측 모형인 GARCH 모형의 모수추정방법으로 지능형 시스템인 Support Vector Regression 방법을 제안한다. SVR은 Vapnik에 의해 제안된 Support Vector Machines와 같은 원리를 회귀분석으로 확장한 모형으로서 Vapnik의 e-insensitive loss function을 이용하여 비선형 회귀식의 추정이 가능해졌다. SVM을 이용한 회귀식 SVR은 두터운 꼬리 분포를 보이는 주식시장의 변동성과 같은 관찰치에서도 우수한 추정 성능을 보인다. 2차 손실함수를 사용하는 기존의 최소자승법은 부최적해로서 추정 오차가 확대될 수 있다. Vapnik의 손실함수에서는 입실론 범위내의 예측 오차는 무시하고 큰 예측 오차만 손실로 처리하기 때문에 구조적 위험의 최소화를 추구하게 된다. 금융 시계열 자료를 분석한 많은 연구들은 SVR의 우수성을 보여주고 있다. 본 연구에서는 주가 변동성의 분석 대상으로서 KOSPI 200 주가지수를 사용한다. KOSPI 200 주가지수는 한국거래소에 상장된 우량주 중 거래가 활발하고 업종을 대표하는 200 종목으로 구성된 업종 대표주들의 포트폴리오이다. 분석 기간은 2010년부터 2015년까지의 6년 동안이며, 거래일의 일별 주가지수 종가 자료를 사용하였고 수익률 계산은 주가지수의 로그 차분값으로 정의하였다. KOSPI 200 주가지수의 일별 수익률 자료의 실증분석을 통해 기존의 Maximum Likelihood Estimation 방법과 본 논문이 제안하는 지능형 변동성 예측 모형의 예측성과를 비교하였다. 주가지수 수익률의 일별 자료 중 학습구간에서 대칭 GARCH 모형과 E-GARCH, GJR-GARCH와 같은 비대칭 GARCH 모형에 대하여 모수를 추정하고, 검증 구간 데이터에서 변동성 예측의 성과를 비교하였다. 전체 분석기간 1,487일 중 학습 기간은 1,187일, 검증 기간은 300일 이다. MLE 추정 방법의 실증분석 결과는 기존의 많은 연구들과 비슷한 결과를 보여주고 있다. 잔차의 분포는 정규분포보다는 Student t분포의 경우 더 우수한 모형 추정 성과를 보여주고 있어, 주가 수익률의 비정규성이 잘 반영되고 있다고 할 수 있다. MSE 기준으로, SVR 추정의 변동성 예측에서는 polynomial 커널함수를 제외하고 linear, radial 커널함수에서 MLE 보다 우수한 예측 성과를 보여주었다. DA 지표에서는 radial 커널함수를 사용한 SVR 기반의 지능형 GARCH 모형이 가장 우수한 변동성의 변화 방향에 대한 방향성 예측력을 보여주었다. 추정된 지능형 변동성 모형을 이용하여 예측된 주식 시장의 변동성 정보가 경제적 의미를 갖는지를 검토하기 위하여 지능형 변동성 거래 전략을 도출하였다. 지능형 변동성 거래 전략 IVTS의 진입규칙은 내일의 변동성이 증가할 것으로 예측되면 변동성을 매수하고 반대로 변동성의 감소가 예상되면 변동성을 매도하는 전략이다. 만약 변동성의 변화 방향이 전일과 동일하다면 기존의 변동성 매수/매도 포지션을 유지한다. 전체적으로 SVR 기반의 GARCH 모형의 투자 성과가 MLE 기반의 GARCH 모형의 투자 성과보다 높게 나타나고 있다. E-GARCH, GJR-GARCH 모형의 경우는 MLE 기반의 GARCH 모형을 이용한 IVTS 전략은 손실이 나지만 SVR 기반의 GARCH 모형을 이용한 IVTS 전략은 수익으로 나타나고 있다. SVR 커널함수에서는 선형 커널함수가 더 좋은 투자 성과를 보여주고 있다. 선형 커널함수의 경우 투자 수익률이 +526.4%를 기록하고 있다. SVR 기반의 GARCH 모형을 이용하는 IVTS 전략의 경우 승률도 51.88%부터 59.7% 사이로 높게 나타나고 있다. 옵션을 이용하는 변동성 매도전략은 방향성 거래전략과 달리 하락할 것으로 예측된 변동성의 예측 방향이 틀려 변동성이 소폭 상승하거나 변동성이 하락하지 않고 제자리에 있더라도 옵션의 시간가치 요인 때문에 전체적으로 수익이 실현될 수도 있다. 정확한 변동성의 예측은 자산의 가격 결정뿐만 아니라 실제 투자에서도 높은 수익률을 얻을 수 있기 때문에 다양한 형태의 인공신경망을 활용하여 더 나은 예측성과를 보이는 변동성 예측 모형을 개발한다면 주식시장의 투자자들에게 좋은 투자 정보를 제공하게 될 것이다.

MODIS 지표면 온도 자료와 지구통계기법을 이용한 지상 기온 추정 (Estimation of Near Surface Air Temperature Using MODIS Land Surface Temperature Data and Geostatistics)

  • 신휴석;장은미;홍성욱
    • Spatial Information Research
    • /
    • 제22권1호
    • /
    • pp.55-63
    • /
    • 2014
  • 수문학, 기상학 및 기후학 등에서 필수적인 자료중의 하나인 지상기온 자료는 최근 보건, 생물, 환경 등의 다양한 분야로까지 활용영역이 확대되고 있어 그 중요성이 커지고 있으나 지상관측을 통한 지상기온자료의 취득은 시공간적인 제약이 크기 때문에 실측된 기온자료는 시공간 해상도가 낮아 높은 해상도가 요구되는 연구 분야에서는 활용성에 큰 제약을 갖게 된다. 이를 극복하기 위한 하나의 대안으로 상대적으로 높은 시공간 해상도를 가지고 있는 위성영상자료에서 얻을 수 있는 지표면온도 자료를 이용하여 지상기온을 추정하는 많은 연구들이 수행되어 왔다. 본 연구는 이러한 연구의 일환으로써 기상청에서 제공하고 있는 AWS(Automatic Weather Station)에서 취득된 2010년 지상 온도 자료(AWS data)를 바탕으로 대표적인 지표면 온도자료인 MODIS Land Surface temperature(LST data:MOD11A1)와 지상기온에 영향을 미칠 수 있는 Land Cover Data, DEM(digital elevation model) 등의 보조 자료와 함께 다양한 지구통계 기법들을 이용하여 남한 지역의 지상기온을 추정하였다. 추정 전 2010년 전체(365일) LST자료와 AWS자료와의 차이에 대한 RMSE(Root Mean Square Error)값의 계절별 피복별 분석결과 계절에 따른 RMSE값의 변동계수는 0.86으로 나타났으나 피복에 따른 변동계수는 0.00746으로 나타나 계절별 차이가 피복별 차이보다 큰 것으로 분석 되었다. 계절별 RMSE 값은 겨울철이 가장 낮은 것으로 나타났으며 AWS자료와 LST자료와 보조자료를 이용한 선형 회귀분석결과에서도 겨울철의 결정 계수가 가장 높은 0.818로 나타났으며, 여름철의 경우에는 0.078로 나타나 계절별 차이가 매우 크게 나타났다. 이러한 결과를 바탕으로 지구통계 기법들의 대표적인 방법론인 크리깅 방법 중 일반적으로 많이 사용되고 있는 정규 크리깅, 일반 크리깅, 공동 크리킹, 회귀 크리깅을 이용하여 지상기온을 추정한 후 모델의 정확도를 판단할 수 있는 교차 검증을 실시한 결과 정규 크리깅과 일반 크리깅에 의한 RMSE 값은 1.71, 공동 크리깅과 회귀 크리깅에 의한 RMSE 값은 각각 1.848, 1.63으로 나타나 회귀 크리깅 방법에 의한 추정의 정확도가 가장 높은 것으로 분석되었다.

폐동맥고혈압 진단에 있어 N-terminal Pro-brain Natriuretic Peptide 측정의 유용성 (The Utility of Measurement of Plasma N-terminal Pro-brain Natriuretic Peptide in Diagnosis of Pulmonary Hypertension)

  • 한창훈;강석민;문진욱;조재희;황상연;이중민;박무석;정재호;김영삼;김세규;장준;심원흠;김성규
    • Tuberculosis and Respiratory Diseases
    • /
    • 제56권1호
    • /
    • pp.67-76
    • /
    • 2004
  • 연구배경 : 만성호흡기질환 환자에서 폐동맥고혈압은 불량한 예후를 나타낸다. 접근성이 용이하고 비침습적인 방법으로서 혈청 NT-proBNP농도 측정이 폐동맥고혈압 진단에 유용성이 있는지 알아보기 위하여 본 연구를 진행하였다. 방 법 : 임상적으로 수축기 폐동맥고혈압이 의심되는 환자 29명을 대상으로 전기화학발광 면역분석법을 이용하여 혈청 NT-proBNP농도를 측정하였고, 동맥혈가스검사, 혈청 생화학검사, 폐기능검사, 그리고 도플러 심초음파검사를 실시하여 우심실 수축기압을 통해 수축기 폐동맥압을 예측하였다. 결 과 : 로그 값으로 치환한 혈청 NT-proBNP농도와 수축기 폐동맥압과는 양성 선형 상관관계를 갖고 있었다(Correlation coefficiency: 0.783, p-value < 0.001). 혈청 NT-proBNP 농도는 우심실 수축기압, 우심실 비대, 심실간 중격의 편평화, 우심실 확장과 유의한 관련이 있었다. 결 론 : 임상적으로 폐동맥고혈압을 의심하는 환자에서 혈청 NT-proBNP 농도 측정은 간단하게 폐동맥고혈압 유무를 알 수 있는 유용한 표지자로서 사용이 가능할 것으로 보이며, 이에 대한 추가 연구가 필요하리라 생각된다.

감정예측모형의 성과개선을 위한 Support Vector Regression 응용 (Application of Support Vector Regression for Improving the Performance of the Emotion Prediction Model)

  • 김성진;유은정;정민규;김재경;안현철
    • 지능정보연구
    • /
    • 제18권3호
    • /
    • pp.185-202
    • /
    • 2012
  • 오늘날 정보사회에서는 정보에 대한 가치를 인식하고, 이를 위한 정보의 활용과 수집이 중요해지고 있다. 얼굴 표정은 그림 하나가 수천개의 단어를 표현할 수 있듯이 수천 개의 정보를 지니고 있다. 이에 주목하여 최근 얼굴 표정을 통해 사람의 감정을 판단하여 지능형 서비스를 제공하기 위한 시도가 MIT Media Lab을 필두로 활발하게 이루어지고 있다. 전통적으로 기존 연구에서는 인공신경망, 중회귀분석 등의 기법을 통해 사람의 감정을 판단하는 연구가 이루어져 왔다. 하지만 중회귀모형은 예측 정확도가 떨어지고, 인공신경망은 성능은 뛰어나지만 기법 자체가 지닌 과적합화 문제로 인해 한계를 지닌다. 본 연구는 사람들의 자극에 대한 반응으로서 나타나는 얼굴 표정을 통해 감정을 추론해내는 지능형 모형을 개발하는 것을 목표로 한다. 기존 얼굴 표정을 통한 지능형 감정판단모형을 개선하기 위하여, Support Vector Regression(이하 SVR) 기법을 적용하는 새로운 모형을 제시한다. SVR은 기존 Support Vector Machine이 가진 뛰어난 예측 능력을 바탕으로, 회귀문제 영역을 해결하기 위해 확장된 것이다. 본 연구의 제안 모형의 목적은 사람의 얼굴 표정으로부터 쾌/불쾌 수준 그리고 몰입도를 판단할 수 있도록 설계되는 것이다. 모형 구축을 위해 사람들에게 적절한 자극영상을 제공했을 때 나타나는 얼굴 반응들을 수집했고, 이를 기반으로 얼굴 특징점을 도출 및 보정하였다. 이후 전처리 과정을 통해 통계적 유의변수를 추출 후 학습용과 검증용 데이터로 구분하여 SVR 모형을 통해 학습시키고, 평가되도록 하였다. 다수의 일반인들을 대상으로 수집된 실제 데이터셋을 기반으로 제안모형을 적용해 본 결과, 매우 우수한 예측 정확도를 보임을 확인할 수 있었다. 아울러, 중회귀분석이나 인공신경망 기법과 비교했을 때에도 본 연구에서 제안한 SVR 모형이 쾌/불쾌 수준 및 몰입도 모두에서 더 우수한 예측성과를 보임을 확인할 수 있었다. 이는 얼굴 표정에 기반한 감정판단모형으로서 SVR이 상당히 효과적인 수단이 될 수 있다는 점을 알 수 있었다.