• Title/Summary/Keyword: linear reservoir

Search Result 169, Processing Time 0.027 seconds

A Study on Dynamic Analysis of Nano Fountain Pen (나노 파운틴펜의 동적해석에 관한 연구)

  • Lee, Young-Kwan;Kim, Hun-Mo;Kim, Youn-Jae;Lee, Suk-Han
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.922-929
    • /
    • 2006
  • In this study, flow characteristics of the FPN (Fountain Pen Nano-Lithography) using active membrane pumping are investigated. This FPN has integrated chamber, micro channel, and high capacity reservoir for continuous ink feed. The most important aspect in this probe provided control of fluid injection using active membrane pumping in chamber. The flow rates in channel by capillary force are theoretically analyzed, including the control of mass flow rates by deflection of membrane. The above results are compared with numerical simulations that calculated by commercial code, FLUENT. The velocity of fluid in micro channel shows linear behaviors. And the mass flows are proportional to the second order function of pumping pressure that is imposed to membrane.

  • PDF

Development of an Automatic Ophthalmological Outflow Facility Measuring Device (자동 안압 측정장치의 개발)

  • Kim, H.S.;Choi, Gi-S.;Lim, Y.A.;Ki, C.W.;Kim, W.K.;Hong, T.M.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.178-181
    • /
    • 1996
  • The Outflow facility of eye ball provides crucial informations in the diagnose of ophthalmological glaucoma. Tn this study an ophthalmic outflow facility measuring device is developed and experimentally tested. This system employs pressure sensors and linear positioning device to regulate solution reservoir height, the pressure of eye ball. The experimental result show that the system works well even in harsh environment so that it can be implemented in ophthalmic practice as well as in biomedical research.

  • PDF

Sensitivity Analysis of Climate Factors on Runoff and Soil Losses in Daecheong Reservoir Watershed using SWAT (SWAT 모형을 이용한 대청댐 유역의 기후인자에 따른 유출 및 유사량 민감도 평가)

  • Ye, Lyeong;Chung, Se-Woong;Lee, Heung-Soo;Yoon, Sung-Wan;Jeong, Hee-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.7-17
    • /
    • 2009
  • Soil and Water Assessment Tool (SWAT) was used to assess the impact of potential future climate change on the water cycle and soil loss of the Daecheong reservoir watershed. A sensitivity analysis using influence coefficient method was conducted for two selected hydrological input parameters and three selected sediment input parameters to identify the most to the least sensitive parameters. A further detailed sensitivity analysis was performed for the parameters: Manning coefficient for channel (Cn), evaporation (ESCO), and sediment concentration in lateral (LAT_SED), support practice factor (USLA_P). Calibration and verification of SWAT were performed on monthly basis for 1993~2006 and 1977~1991, respectively. The model efficiency index (EI) and coefficient of determination ($R^2$) computed for the monthly comparisons of runoffs were 0.78 and 0.76 for the calibration period, and 0.58 and 0.65 for the verification period. The results showed that the hydrological cycle in the watershed is very sensitive to climate factors. A doubling of atmospheric $CO_2$ concentrations was predicted to result in an average annual flow increase of 27.9% and annual sediment yield increase of 23.3%. Essentially linear impacts were predicted between two precipitation change scenarios of -20, and 20%, which resulted in average annual flow and sediment yield changes at Okcheon of -53.8%, 63.0% and -55.3%, 65.8%, respectively. An average annual flow increase of 46.3% and annual sediment yield increase of 36.4% was estimated for a constant humidity increase 5%. An average annual flow decrease of 9.6% and annual sediment yield increase of 216.4% was estimated for a constant temperature increase $4^{\circ}C$.

Conjunctive Management Considering Stream-Aquifer Systems for Drought Season (지표수 지하수 연계운영에 의한 갈수기 지표수-수자원관리)

  • Cha, Kee-Uk;Kim, Woo-Gu;Shin, Young-Rho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.389-394
    • /
    • 2008
  • The purpose of this research was to develop a methodology to determine whether conjunctive surface water and groundwater management could significantly reduce deficits in a river basin with a relatively limited alluvial aquifer. The Geum River basin is one of major river basins in South Korea. The upper region of the Geum River basin is typical of many river basins in Korea where the shape of river basin is narrow with small alluvial aquifer depths from 10m to 20m and where most of the groundwater pumped comes quickly from the steamflow. The basin has two surface reservoirs, Daecheong and Yongdam. The most recent reservoir, Yongdam, provides water to a trans-basin diversion, and therefore reduces the water resources available in the Geum River basin. After the completion of Yongdam reservoir, the reduced water supply in the Geum basin resulted in increasing conflicts between downstream water needs and required instream flows, particularly during the low flow season. Historically, the operation of groundwater pumping has had limited control and is administered separately from surface water diversions. Given the limited size of the alluvial aquifer, it is apparent that groundwater pumping is essentially taking its water from the stream. Therefore, the operation of the surface water withdrawals and groundwater pumping must be considered together. The major component of the conjunction water management in this study is a goal-programmin g based optimization model that simultaneously considers surface water withdrawals, groundwater pumping and instream flow requirements. A 10-day time step is used in the model. The interactions between groundwater pumping and the stream are handled through the use of response and lag coefficients. The impacts of pumping on streamflow are considered for multiple time periods. The model is formulated as a linear goal-programming problem that is solved with the commercial LINGO optimization software package.

  • PDF

Spatio-temporal variabilities of nutrients and chlorophyll, and the trophic state index deviations on the relation of nutrients-chlorophyll-light availability

  • Calderon, Martha S.;An, Kwang-Guk
    • Journal of Ecology and Environment
    • /
    • v.39 no.1
    • /
    • pp.31-42
    • /
    • 2016
  • The object of this study was to determine long-term temporal and spatial patterns of nutrients (nitrogen and phosphorus), suspended solids, and chlorophyll (Chl) in Chungju Reservoir, based on the dataset of 1992 - 2013, and then to develop the empirical models of nutrient-Chl for predicting the eutrophication of the reservoir. Concentrations of total nitrogen (TN) and total phosphorus (TP) were largely affected by an intensity of Asian monsoon and the longitudinal structure of riverine (Rz), transition (Tz), and lacustrine zone (Lz). This system was nitrogen-rich system and phosphorus contents in the water were relatively low, implying a P-limiting system. Regression analysis for empirical model, however, showed that Chl had a weak linear relation with TP or TN, and this was mainly associated with turbid, and nutrient-rich inflows in the system. The weak relation was associated with non-algal light attenuation coefficients (Kna), which is inversely related water residence time. Thus, values of Chl had negative functional relation (R2 = 0.25, p < 0.001) with nonalgal light attenuation. Thus, the low chlorophyll at a given TP indicated a light-limiting for phytoplankton growth and total suspended solids (TSS) was highly correlated (R2 = 0.94, p < 0.001) with non-algal light attenuation. The relations of Trophic State Index (TSI) indicated that phosphorus limitation was weak [TSI (Chl) - TSI (TP) < 0; TSI (SD) - TSI (Chl) > 0] and the effects of zooplankton grazing were also minor [TSI (Chl) - TSI (TP) > 0; TSI (SD) - TSI (Chl) > 0].

Modeling Artificial Groundwater Recharge in the Hancheon Drainage Area, Jeju island, Korea (제주도 한천유역 지하수 모델개발을 통한 인공함양 평가)

  • Oh, Se-Hyoung;Kim, Yong-Cheol;Koo, Min-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.6
    • /
    • pp.34-45
    • /
    • 2011
  • For the Hancheon drainage area in Jeju island, a groundwater flow model using Visual MODFLOW was developed to simulate artificial recharge through injection wells installed in the Hancheon reservoir. The model was used to analyze changes of the groundwater level and the water budget due to the artificial recharge. The model assumed that $2{\times}10^6m^3$ of storm water would recharge annually through the injection wells during the rainy season. The transient simulation results showed that the water level rose by 39.6 m at the nearest monitoring well and by 0.26 m at the well located 7 km downstream from the injection wells demonstrating a large extent of the affected area by the artificial recharge. It also shown that, at the time when the recharge ended in the 5th year, the water level increased by 81 m at the artificial reservoir and the radius of influence was about 2.1 km downstream toward the coast. The residence time of recharged groundwater was estimated to be no less than 5 years. The model also illustrated that 15 years of artificial recharge could increase the average linear velocity of groundwater up to 1540 m/yr, which showed 100 m/yr higher than before. Increase of groundwater storage due to artificial recharge was calculated to be $2.4{\times}10^6$ and $4.3{\times}10^6m^3$ at the end of the 5th and 10th years of artificial recharge, respectively. The rate of storage increase was gradually diminished afterwards, and storage increase of $5.0{\times}10^6m^3$ was retained after 15 years of artificial recharge. Conclusively, the artificial recharge system could augment $5.0{\times}10^6m^3$ of additional groundwater resources in the Hancheon area.

Computer Simulation of Die Extrusion for Rubber Compound Using Simplified Viscoelastic Model (간략화된 점탄성 모델을 적용한 고무 컴파운드의 압출 해석)

  • Kim, J. H.;Hong, J. S.;Choi, S. H.;Kim, H. J.;Lyu, M. Y.
    • Elastomers and Composites
    • /
    • v.46 no.1
    • /
    • pp.54-59
    • /
    • 2011
  • One of the viscoelastic flow behaviors during profile extrusion is the swelling of extrudate. In this study, die swell of rubber compound in the capillary die have been investigated through experiment and computer simulation. Simplified viscoelastic model and non-linear differential viscoelastic model such as PTT model have been used in the computer simulation. The simulation results have been compared with experimental data. Experiment and simulation have been performed using fluidity tester and commercial CFD code, Polyflow respectively. Die swells predicted by two models showed good agreement with experimental results. Pressure and velocity distribution, and circulation flow at the corner of reservoir have been well predicted by PTT model. Simplified viscoelastic model can not predict circulation flow at the corner of reservoir. However this model has an advantage in computation time compare with full viscoelastic model, PTT model.

Case Study: Groundwater Recharge Hydrograph in Pyeongchang River (평창강 지하수 함양곡선 연구)

  • Kwak, Jaewon
    • Journal of Wetlands Research
    • /
    • v.23 no.2
    • /
    • pp.173-182
    • /
    • 2021
  • It is important to extract and assess low-flow recession characteristics for water resources management in the upper reaches of a stream. It is difficult to express the groundwater flow recession characteristics for streamflow synthetically. The linear recession model has been widely used by baseflow recession analysis for reason of simplicity and convenience, but recent studies show that nonlinear recession models fit well, and the relationship between the reservoir storage of shallow unconfined aquifers and the groundwater discharge was to be identified as nonlinear in the literature based on the analysis of numerous streamflow recession curves. The objective of the study is to decode these nonlinear characteristics, including evaporation loss, storage, and recharge of groundwater using streamflow. By analyzing the observed time series of streamflow from the study area, which is the Pyeongchang River basin in Korea, the main components of the underlying groundwater balance, namely, discharge, evaporation loss, storage, and recharge, can be identified and quantified. As a result of the study, depletion of groundwater by evapotranspiration losses through the water uptake of tree roots was found to bias the recession curves and the estimated reservoir parameters. The seasonality of both rainfall and potential evaporation, analysis of the recession curves, stratified according to time of the year, allowed the quantification of evapotranspiration loss as a function of a calendar month and stored groundwater storage.

Estimation of Seepage Rate through Core Zone of Rockfill Dam (중심코어형 사력댐의 코어죤 침투량 예측기법)

  • Lee, Jong-Wook;Lim, Heui-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.4
    • /
    • pp.47-58
    • /
    • 2010
  • Seepage rate through the core zone of rockfill dam, estimated from graphical technique and the equation by Sakamoto (1998), is different from the real condition because of neglecting unsaturated flow. With existing method to estimate total seepage rate, it is difficult to understand the tendency of total seepage rate changes by reservoir water level change. Steady state seepage rate and the factors affecting the time needed to attain to changes of reservoir water level and saturated hydraulic conductivity and unsaturated hydraulic properties of core material are analysed thorough the 2-D steady and unsteady state seepage analyses of Soyanggang dam. Numerical results revealed that the seepage rate can be expressed by the linear equation form and the value of unsaturated soil parameter n is the most important factor affecting the seepage rate and the time needed to attain steady state. The estimation method presented in this study can be used by the designer and the personnel of dam safety for convenient estimation of seepage rate and quantitative analysis of measured seepage rate without 2-D and 3-D numerical analyses.

Derivation of Storage Coefficient and Concentration Time for Derivation of Lateral Inflow Hydrograph (측방 유입 수문곡선 유도를 위한 저류상수 및 집중시간의 유도)

  • Yoo, Chul-Sang;Kim, Ha-Young;Park, Chang-Yeol
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.3
    • /
    • pp.243-252
    • /
    • 2012
  • The objective of this study is to analyze lateral inflow hydrologically. The IUH of lateral inflow is sum of the impulse responses of total cells in basin. This IUH bases on the Muskingum channel routing method, which hydrologically re-analysed to represent it as a linear combination of the linear channel model considering only the translation and the linear reservoir model considering only the storage effect. Rectangular and triangular basins were used as imaginary basins and IUH of each basin were derived. The derived IUH have different characteristics with respect to basin's shape. The storage coefficient of lateral inflow was also derived mathematically using general definitions of concentration time and storage coefficient. As a result, the storage coefficient of lateral inflow could be calculated easily using basin's width, length and hydrological characteristics of channel.