• Title/Summary/Keyword: linear quadratic control

Search Result 531, Processing Time 0.046 seconds

A Class of Singular Quadratic Control Problem With Nonstandard Boundary Conditions

  • Lee, Sung J.
    • Honam Mathematical Journal
    • /
    • v.8 no.1
    • /
    • pp.21-49
    • /
    • 1986
  • A class of singular quadratic control problem is considered. The state is governed by a higher order system of ordinary linear differential equations and very general nonstandard boundary conditions. These conditions in many important cases reduce to standard boundary conditions and because of the conditions the usual controllability condition is not needed. In the special case where the coefficient matrix of the control variable in the cost functional is a time-independent singular matrix, the corresponding optimal control law as well as the optimal controller are computed. The method of investigation is based on the theory of least-squares solutions of multi-valued operator equations.

  • PDF

Linear quadratic regulators of two-time scale systems with eigenvalue placement in a vertical strip (수직스트립으로의 고유치배치에 의한 두시간스케일 시스템에서의 선형2차 동조기 구현)

  • 엄태호;김수중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.198-202
    • /
    • 1987
  • The regulator problem can be considered as some impulsive disturbance rejection one. In this point of view, the rate of decay is one of important factors for regulation and depends on how negative the real parts of the eigenvalues of closed-loop system. The algorithm that the closed-loop system has eigenvalues lying within a vertical. strip is useful for rapid disturbance rejection. This paper presents a design method for a linear quadratic regulator of two-time scale system with eigenvalues in a vertical strip by use of time-scale separation property.

  • PDF

Optimized Power Control for CDMA System under Fast Channel Variance (빠른 채널 변화를 수반하는 CDMA 환경에서의 최적 전력 제어)

  • Kim, Hyung-Suck;Byun, Ji-Young;You, Kwan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.246-248
    • /
    • 2004
  • In this paper, we propose an optimal power control algorithm for CDMA cellular systems. The proposed power control algorithm is based on linear quadratic control theory. As the cellular system includes the changeability of system environment or various noise, Kalman filter is adapted to estimate the time-varying interference. This is the well-known linear quadratic Gaussian (LQG) theory. Through this algorithm, power transmission of each mobile with optimal one is more realistic. Simulation results show a fast convergence rate to optimal power value, and a rapid decreasing outage probability.

  • PDF

Controller Design for Fuzzy Systems via Piecewise Quadratic Value Functions

  • Park, Jooyoung;Kim, JongHo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.3
    • /
    • pp.300-305
    • /
    • 2004
  • This paper concerns controller design for the Takagi-Sugeno (TS) fuzzy systems. The design method proposed in this paper is derived in the framework of the optimal control theory utilizing the piecewise quadratic optimal value functions. The major part of the proposed design procedure consists of solving linear matrix inequalities (LMIs). Since LMIs can be solved efficiently within a given tolerance by the recently developed interior point methods, the design procedure of this paper is useful in practice. A design example is given to illustrate the applicability of the proposed method.

Skyhook Control of a Semi-Active ER Damper (반능동 ER댐퍼의 스카이훅 제어)

  • Lee, Yuk-Hyeong;Park, Myeong-Gwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.1
    • /
    • pp.56-62
    • /
    • 2001
  • In this paper, skyhook control of a semi-active ER(Electro-Rheological) damper is investigated. The strength of the ER damper is controlled by a high voltage power supply. This paper deals with a two-degree-of-freedom suspension using the damper with ERF for a quarter vehicle system. The control law for semi-active suspensions modeled in this study is developed using skyhook and Linear Quadratic Regulator(LQR) optimal control method. Computer simulation and experimental results show that the semi-active suspension with ERF damper has good performances of ride quality.

  • PDF

Stabilizing Control of Discrete-Time Uncertain Systems (이산시간 불확정 시스템의 안정화 제어)

  • Lee, Jung-Moon
    • Journal of Industrial Technology
    • /
    • v.10
    • /
    • pp.3-8
    • /
    • 1990
  • This paper presents a linear state feedback control approach to the stabilization of discrete-time uncertain systems with bounded uncertain parameters. The approach is based on the LQ(linear quadratic) regulator theory and Lyapunov's stability analysis. Asymptotically stable behavior is guaranteed in the presence of parameter uncertainties, and the upper bound of the performance index is determined.

  • PDF

Guaranteed Performance Control of Uncertain Linear Systems via Constant Gain State Feedback (고정이득 상태귀환을 통한 불확정 선형 시스템의 성능보장제어)

  • 이정문;최계근
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.6
    • /
    • pp.956-960
    • /
    • 1987
  • This paper investigates the control problem which is specified by an uncertain linear system and a linear quadratic performance index. Only the size of parameter uncertainty is assumed to be given instead of its statistics. In addition, a mathing condition which constrains the system structure is assumed to be satisfied. The control law can be obtained by solving an LQ optimal control problem for a nominal system.

  • PDF

Actrve Suspension Control using aFrequency-Shaped Performance Index (주파수 형태의 성능지수를 고려한 능동형 현가장치 제어)

  • 김희수;기창두;황원걸
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.299-304
    • /
    • 1993
  • A 1/4 car model(2 DOF system) is employed to evaluate the performance included a quadratic cost functional in frequency domain. The design procedure of feedback control to optimize the performance index results in a modified Linear-Quadratic-Gaussian problem and cultivates a quite simple control algorithm. Computer simulation result is shown that the LQG method using frequency shaped performance index is outstanding in ride comfort and its response converges to the steady state very rapidly in comparison with the known passive suspension, classical design methods LQR/ and LQG.

  • PDF

A Nonlinear Transformation Approach to Adaptive Output Feedback Control of Uncertain Nonlinear Systems

  • Ahn, Choon-Ki;Kim, Beom-Soo;Lim, Myo-Taeg
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.48.1-48
    • /
    • 2001
  • In this paper, we present a global adaptive output feedback control scheme for a class of uncertain nonlinear systems to which adaptive observer backstepping method may not be applicable directly. The allowed output feedback structure includes quadratic and multiplicative dependency of unmeasured states. Our novel design technique employs a change of coordinates and adaptive backstepping. With these proposed tools, we can remove linear and quadratic dependence on the unmeasured states in the state equation. Also, the multiplication of the two unmeasured states can be eliminated ...

  • PDF

Design and its Application of Robust Degital Optimal Model Following Servo System (강인한 디지털 최적모델 추종형 서보시스템의 구성과 그 적용)

  • 이양우;김정택;황창선
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.7
    • /
    • pp.1186-1192
    • /
    • 1994
  • This paper presents an algorithm to design a robust digital model following servo control system in which optimal linear quadratic regulator problem is used to design the control system that make the step/ramp response of the plant kept close to a specified ideal step/ramp response of the model. The quadratic criterion function for a continuous system is used to design the robust digital servo control system. The feasibility of the design technique is shown by the simulation and the proposed method is applied to the speed control of DC servo motor.

  • PDF