• Title/Summary/Keyword: linear pressure distribution of the soil

Search Result 12, Processing Time 0.025 seconds

Off-road tractive performance of tracked vehicles and the effects of soil parameters (궤도차량의 야지기동성 평가와 토지특성의 영향)

  • 김진우
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.76-84
    • /
    • 1991
  • The off-road tractive performance of tracked vehicles can be evaluated in terms of soil thrust, motion resistance and drawbar pull. The ability to predict accurately ground pressure distribution under track is of importance since the vehicle sinkage and motion resistance are closely related to it. While the formulation of the method for predicting ground pressure distribution follows closely in spirit the ideas outlined for the terrain with linear pressure- sinkage relation case by Garber and Wong, the analysis of various terrain stiffness is magnified by numerical implementation procedure. The effects of soil parameters on tractive forces can be introduced through the terrain-track interaction such as pressure-sinkage and shearing characteristics. It is illustrated by determining the drawber pull-slip relation and corresponding ground pressure distribution for the terrains typically chosen and by comparing the results with the conventional ones based on normal ground pressure. The factorial experiment method is finally adopted for checking the sensitivity of the values of soil parameters on the drawbar pull.

  • PDF

An Experimental Study for Soil Pressure Increment Ratios according to Strip Load in Sandy Soil (사질토 지반의 띠하중 재하에 따른 지중응력증가비의 실험적 고찰)

  • Bong, Tae-Ho;Kim, Seong-Pil;Heo, Joon;Son, Young-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.4
    • /
    • pp.21-27
    • /
    • 2011
  • Soil stress distribution under loading is one of the important problems in civil engineering. Many models have been proposed to interpret the stress distribution in soil and most models assume that the soil is homogeneous and isotropic. Therefore, the actual stress distribution may be different. In addition, With the increase of the top load, soil stress does not increase linearly. In this study, vertical stress changes in sandy soil according to top load increase were measured through experiments. Experimental results, vertical soil stress due to top load increase showed an initial nonlinear behavior and when the load increases to some extent, vertical soil stress showed a linear behavior. ${\alpha}$ value obtained by existing theories always 1.00. But, ${\alpha}$ value by experiment was observed from 0.91 to 1.22 and ${\alpha}$ value was increased with increasing distance from the loading plate.

A Study on Soil-Water Characteristic Curves of Reclaimed Soil and Weathered Granite Soil (준설매립토 및 화강풍화토의 흙-수분 특성곡선에 관한 연구)

  • 신은철;이학주;김환준
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.743-750
    • /
    • 2002
  • Unsaturated soil has a possibility to induce a negative pore water pressure. Until now, saturated soil is mainly focused on the research of soil mechanics. Recently, soil mechanics is researched on two major parts such as saturated and unsaturated soil mechanics. Negative pore water pressure has a non-linear relationship with the water content changes. Soil-water characteristic curves of soil in Korea are not determined. There is no proper characteristic value such as air-entry value and residual water content. In this study, the characteristic curves of reclaimed soil, sand, and weathered granite soil were determined by laboratory tests. Air-entry value and residual water content were determined by fitting methods. Soil-water characteristic curves were estimated based on the particle-size distribution and compared with the laboratory test results. The results of soil-water characteristic curves estimation indicated that Fredlund and Wilson's model is excellent for sand and weathered granite soil. Arya and Paris's model is excellent for reclaimed soil.

  • PDF

Numerical FEM assessment of soil-pile system in liquefiable soil under earthquake loading including soil-pile interaction

  • Ebadi-Jamkhaneh, Mehdi;Homaioon-Ebrahimi, Amir;Kontoni, Denise-Penelope N.;Shokri-Amiri, Maedeh
    • Geomechanics and Engineering
    • /
    • v.27 no.5
    • /
    • pp.465-479
    • /
    • 2021
  • One of the important causes of building and infrastructure failure, such as bridges on pile foundations, is the placement of the piles in liquefiable soil that can become unstable under seismic loads. Therefore, the overarching aim of this study is to investigate the seismic behavior of a soil-pile system in liquefiable soil using three-dimensional numerical FEM analysis, including soil-pile interaction. Effective parameters on concrete pile response, involving the pile diameter, pile length, soil type, and base acceleration, were considered in the framework of finite element non-linear dynamic analysis. The constitutive model of soil was considered as elasto-plastic kinematic-isotropic hardening. First, the finite element model was verified by comparing the variations on the pile response with the measured data from the centrifuge tests, and there was a strong agreement between the numerical and experimental results. Totally 64 non-linear time-history analyses were conducted, and the responses were investigated in terms of the lateral displacement of the pile, the effect of the base acceleration in the pile behavior, the bending moment distribution in the pile body, and the pore pressure. The numerical analysis results demonstrated that the relationship between the pile lateral displacement and the maximum base acceleration is non-linear. Furthermore, increasing the pile diameter results in an increase in the passive pressure of the soil. Also, piles with small and big diameters are subjected to yielding under bending and shear states, respectively. It is concluded that an effective stress-based ground response analysis should be conducted when there is a liquefaction condition in order to determine the maximum bending moment and shear force generated within the pile.

The Analysis of Acoustic Emission Spectra in a 36 kHz Sonoreactor (36kHz 초음파 반응기에서의 원주파수 및 파생주파수의 음압 분포 분석)

  • Son, Younggyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.128-134
    • /
    • 2016
  • Acoustic emission spectra was analyzed to investigate the distribution of sound pressure in a 36 kHz sonoreactor. The sound pressure of fundamental frequency (f: 36 kHz), harmonics (2f: 72 kHz, 3f: 108 kHz, 4f: 144 kHz, 5f: 180 kHz, 6f: 216 kHz), and subharmonics (1.5f: 54 kHz, 2.5f: 90 kHz, 3.5f: 126 kHz, 4.5f: 162 kHz, 5.5f: 198 kHz, 6.5f; 234 kHz) was measured at every 5 cm from the ultrasonic transducer using a hydrophone and a spectrum analyzer. It was revealed that the input power of ultrasound, the application of mechanical mixing, and the concentration of SDS affected the sound pressure distributions of the fundamental frequency and total detected frequencies frequencies significantly. Moreover a linear relationship was found between the average total sound pressure and the degree of sonochemical oxidation while there was no significant linear relationship between the average sound pressure of fundamental frequency and the degree of sonochemical oxidation.

Contact Pressure around the Buried Rigid pipe under Embankment (성토하에 매설된 강성관의 접촉응륜력)

  • 안중선;강병희
    • Geotechnical Engineering
    • /
    • v.1 no.2
    • /
    • pp.7-16
    • /
    • 1985
  • The behaviour of buried rigid pipe under embankment is analysed by a linear finite element program to study the influence of variation of the geometry of soil-conduit pipe system and elastic modulus of soil on the pipe response. The geometry of the system considered includes the thickness of pipe, the height of embankment, and the width arid the depth of trench. The normal contact pressure distribution around the pipe and the vertical load on the pipe are modelled by a multiple linear regression. And the vertical load on the pipe computed by Marston-Spangles Theory Is generally larger than that by finite element analysis. The settiement ratio in Marston-Spangler Theory is found to be variable for various for various of all factors mentioned above.

  • PDF

A Study on Variation of Earth Pressure (토압의 변동에 관한 연구)

  • Bae, Sang Kun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.179-193
    • /
    • 1994
  • In the development of engineering designs, decisions are required irrespective of the state of completeness and quality of information, and are formulated under conditions of uncertainty. Furthermore, under conditions of uncertainty the design invokes risks. Thus, in the design of the structures, the currently used deterministic design method does not provide a realistic assessment of the actual safety or the reliability of the structures. It is desirable that decisions required in The process of the design invariably must be made based on the reliability analysis. Properties of soil material are subject to more uncertainty than those of other structural material. In the field of soil mechanics and foundation engineering, it needed to develop reliability-based design methods. In order to simplify the reliability analysis or the reliability-based design process of the structures associated with the active earth pressure, it is necessary to find the variation and the distribution type of the active earth pressure calculated from the basic properties of soils. Monte Carlo simulation is performed to obtain the relationship between the variation of the active earth pressure for cohessionless soils calculated by using Rankine formula and the basic soil properties and the distribution type of the earth pressure. A series of regression equations obtained by utilizing the multi-linear regression analysis is suggested in this paper and the sensitivity of the basic soil properties to the variation of The earth pressure is investigated. The type of distribution of the active earth pressure was found to be the beta distribution in most cases or to be very similar to the beta distribution, if the basic soil variables are normally distributed.

  • PDF

The Coefficients of Variation Characteristic of Stress Distribution in Silty Sand by Probabilistic Load (확률론적 하중에 따른 실트질 모래지반 내 지중응력의 변동계수 특성)

  • Bong, Tae-Ho;Son, Young-Hwan;Kim, Seong-Pil;Heo, Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.6
    • /
    • pp.77-87
    • /
    • 2012
  • Recently, Load and Resistance Factor Design (LRFD) based on reliability analysis has become a global trend for economical and rational design. In order to implement the LRFD, quantification of uncertainty for load and resistance should be done. The reliability of result relies on input variable, and therefore, it is important to obtain exact uncertainty properties of load and resistance. Since soil stress is the main reason causing the settlement or deformation of ground and load on the underground structure, it is essential to clarify the uncertainty of soil stress distribution for accurately predict the uncertainty of load in LRFD. In this study, laboratory model test on silty sand bed under probabilistic load is performed to observe propagation of upper load uncertainty. The results show that the coefficient of variation (COV) of soil stress are varied depending on location due to non-linear relationship between upper load increment and soil pressure increment. In addition, when the load uncertainty is transmitted through ground, COV is decreased by damping effect.

Dynamic Analysis of Tracked Vehicle by Buoy Characteristics (부이 특성에 따른 궤도 차량 동적 거동)

  • Kim, Hyung-Woo;Min, Cheon-Hong;Lee, Chang-Ho;Hong, Sup;Bae, Dae-Sung;Oh, Jae-Won
    • Ocean and Polar Research
    • /
    • v.36 no.4
    • /
    • pp.495-503
    • /
    • 2014
  • This paper focuses on the dynamic responses of a tracked vehicle crawling on extremely cohesive soft soil, each side of which is composed of two parallel tracks. The tracked vehicle consisted of 2 bodies. One body is the tracked vehicle body, which is assumed to be a rigid body with 6 DOFs. The other body is the buoy body. The two bodies are connected by a revolute joint. In order to evaluate the travelling performance of a 7 DOFs vehicle, a dynamic analysis program for the tracked vehicle was developed using Newmark's method and the incremental-iterative method. The effects of road wheels on the track and soil are not taken into account. A terra-mechanics model of extremely cohesive soft soil is implemented in form of relationships: normal pressure to sinkage, shear resistance to shear displacement, and dynamic sinkage to shear displacement. Pressure-sinkage relationship and shear displacement-stress relationship should represent the non-linear characteristics of extremely soft soil. Especially, since the shear resistance of soft soil is very sensitive to shear displacement, spatial distribution of shear displacement occurring at the contact area of the tracks should be calculated precisely. The proposed program is developed in FORTRAN.

A comparative study between the new model and the current model for T-shaped combined footings

  • Garay-Gallegos, Jesus Rafael;Luevanos-Rojas, Arnulfo;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel;Aguilera-Mancilla, Gabriel;Garcia-Canales, Edith
    • Geomechanics and Engineering
    • /
    • v.30 no.6
    • /
    • pp.525-538
    • /
    • 2022
  • This paper presents a more general model for T-shaped combined footings that support two columns aligned on a longitudinal axis and each column provides an axial load and two orthogonal moments. This model can be applied to the following conditions: (1) without restrictions on its sides, (2) a restricted side and (3) two opposite sides restricted. This model considers the linear soil pressure. The recently published works have been developed for a restricted side and for two opposite sides restricted by Luévanos-Rojas et al. (2018a, b). The current model considers the uniform pressure distribution because the position of the resultant force coincides with the center of gravity of the surface of the footing in contact with the soil in direction of the longitudinal axis where the columns are located. This paper shows three numerical examples. Example 1 is for a T-shaped combined footing with a limited side (one column is located on the property boundary). Example 2 is for a T-shaped combined footing with two limited opposite sides (the two columns are located on the property boundary). Example 3 is for a T-shaped combined footing with two limited opposite sides, one column is located in the center of the width of the upper flange (b1/2=L1), and other column is located at a distance half the width of the strip from the free end of the footing (b2/2=b-L1-L). The main advantage of this work over other works is that this model can be applied to T-shaped combined footings without restrictions on its sides, a restricted side and two opposite sides restricted. It also shows the deficiencies of the current model over the new model.