• Title/Summary/Keyword: linear precoding

Search Result 38, Processing Time 0.029 seconds

A Near Optimal Linear Preceding for Multiuser MIMO Throughput Maximization (다중 안테나 다중 사용자 환경에서 최대 전송율에 근접하는 선형 precoding 기법)

  • Jang, Seung-Hun;Yang, Jang-Hoon;Jang, Kyu-Hwan;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4C
    • /
    • pp.414-423
    • /
    • 2009
  • This paper considers a linear precoding scheme that achieves near optimal sum rate. While the minimum mean square error (MMSE) precoding provides the better MSE performance at all signal-to-noise ratio (SNR) than the zero forcing (ZF) precoding, its sum rate shows superior performance to ZF precoding at low SNR but inferior performance to ZF precoding at high SNR, From this observation, we first propose a near optimal linear precoding scheme in terms of sum rate. The resulting precoding scheme regularizes ZF precoding to maximize the sum rate, resulting in better sum rate performance than both ZF precoding and MMSE precoding at all SNR ranges. To find regularization parameters, we propose a simple algorithm such that locally maximal sum rate is achieved. As a low complexity alternative, we also propose a simple power re-allocation scheme in the conventional regularized channel inversion scheme. Finally, the proposed scheme is tested under the presence of channel estimation error. By simulation, we show that the proposed scheme can maintain the performance gain in the presence of channel estimation error and is robust to the channel estimation error.

Linear Precoding Based on the Imperfect CSI Without Knowing the CSI Reliability (신뢰도를 모르는 불완전한 채널 정보에 기초한 선형 프리코딩)

  • Lee, Woong;Yoon, Eunchul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.9
    • /
    • pp.1678-1685
    • /
    • 2015
  • We propose a linear precoding scheme combining the merits of beamforming and orthogonal space-time block coding based on the imperfect CSI without knowing the CSI reliability. We first investigate the impact of the CSI reliability on precoding performance by assuming various values of the CSI reliability. Then, we propose a method of predicting the CSI reliability based on the received SNR for the design of an efficient precoder. We show the efficiency of the proposed scheme by simulation.

A Study on LMMSE Receiver for Single Stream HSDPA MIMO Systems using Precoding Weights (Single Stream HSDPA MIMO 시스템에서 Precoding Weight 적용에 따른 LMMSE 수신기 성능 고찰)

  • Joo, Jung Suk
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.3-8
    • /
    • 2013
  • In CDMA-based systems, recently, researches on chip-level equalization have been studied in order to improve receiving performance when supporting high-rate data services. In this paper, we consider a chip-level LMMSE (linear minimum mean-squared error) receiver for D-TxAA (dual stream transmit antenna array) based single stream HSDPA MIMO systems using precoding weights. First, we will derive precoding weights for maximizing the total instantaneous received power. We will also analyze the effects of both transmit delay of precoding weights and mobile velocity on chip-level LMMSE receivers, which is verified through computer simulations in various mobile channel environments.

An Adaptive Joint Precoding for Multi-user MIMO Systems (다중 사용자 MIMO 시스템을 위한 적응적 결합 프리코딩)

  • Park, Ju Yong;Hanif, Mohammad Abu;Song, Sang Seob;Lee, Moon Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.3-11
    • /
    • 2014
  • Multiple antennas can provide huge capacity gains when the transmitter knows the channel state information (CSI). Precoding is a technique that exploits CSI at the transmitter side. In this paper, an adaptive precoding scheme is proposed, called a hybrid multiple-input multiple-output (MIMO) precoding (HMP). HMP is a combination of linear and nonlinear precoding. The number of transmit antennas less than or equal to four is as same as the conventional antenna selection scheme. Therefore, the HMP scheme uses more than four transmit antennas. The good channel means that the channels must be selected to maximize the channel capacity among the given channels, and the rest channels are called bad channel. In HMP scheme, we use the nonlinear precoding in the good channels and the linear precoding in the bad channels. The well-known Tomlinson-Harashima precoding (THP) is considered as nonlinear precoding. The system throughput and MSE (minimum square error) are shown for the performance of HMP scheme compared to the conventional schemes which are BD (block diagonalization), antenna selection and THP.

A Linear Precoding Technique for OFDM Systems with Cyclic Delay Diversity

  • Hui, Bing;Chang, Kyung-Hi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.5
    • /
    • pp.253-264
    • /
    • 2008
  • Cyclic delay diversity (CDD) is considered a simple approach to exploit the frequency diversity, to improve the system performance in orthogonal frequency division multiplexing (OFDM) systems. Also, the linear precoding technique can significantly improve the performance of communication systems by exploiting the channel state information (CSI). In order to achieve enhanced performance, we propose applying linear precoding to the conventional CDD-OFDM transmit diversity schemes over Rayleigh fading channels. The proposed scheme works effectively with the accurate CSI in time-division-duplex (TDD) OFDM systems with CDD, where the reciprocity is assumed instead of channel state feedback. For a BER of $10^{-4}$ and the mobility of 3 km/h, simulation results show that a gain of 6 dB is achieved by the proposed scheme over both flat fading and Pedestrian A (Ped A) channels, compared to the conventional CDD-OFDM system. On the other hand, for a mobility of 120 km/h, a gain of 2.7 dB and 3.8 dB is achieved in flat fading and Vehicular A (Veh A) channels, respectively.

On Achievable Information Rates for Multiuser MIMO Systems with MMSE-Based Tomlinson-Harashima Precoding

  • Hui, Bing;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.8C
    • /
    • pp.750-755
    • /
    • 2009
  • Tomlinson-Harashima precoding (THP) is considered as a prominent precoding scheme due to its capability to cancel out the known interference at the transmitter side. Therefore, the information rates achieved by THP are superior to those achieved by conventional linear precoding schemes. In this paper, a new lower bound on the achievable information rate by the regularized THP under additive white Gaussian noise (AWGN) channel with multiuser interference is derived. Analytical results show that the lower bound derived in this paper is tighter than the original lower bound particularly at low SNR range, while both lower bounds converge to the same lower limit as SNR$\rightarrow$$\infty$.

Preformance Analysis of LTE-A System Uplink with Differential Precoding Scheme (차분 선부호화 구조를 적용한 LTE-A 상향링크 시스템의 성능분석)

  • Li, Xun;Park, Noe-Yoon;Kim, Young-Ju
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.5
    • /
    • pp.37-43
    • /
    • 2012
  • The closed-loop multiple-input multiple-output (MIMO) system has been adopted by long term evolution (LTE) system. Many techniques are proposed to enhance the transmission of LTE's advanced version to meet the increasing requirement, in which differential codebook gains a lot of interest. Previous researches on designing differential codebooks focused on quasi-diagonal unitary matrix which cannot guarantee the equal gain property. The equal gain property is very important to uplink because the performance of uplink is very sensitive to the peak-to-average power ratio (PAPR). In this paper, we derive the analytical expression of average bit error rate and PAPR for differential precoding MIMO system. Using the analytical results, we investigate the performances of several differential precoding schemes considering non-linear amplifier at the transmitter. Some selected simulation results indicate that the conventional differential precoding schemes have good performances without the consideration of non-linear amplifier. While considering non-linear amplifier, the proposed differential codebook outperforms other differential precoding schemes because it maintains the equal gain per transmit antenna.

Joint Energy Efficiency Optimization with Nonlinear Precoding in Multi-cell Broadcast Systems

  • Gui, Xin;Lee, Kyoung-Jae;Jung, Jaehoon;Lee, Inkyu
    • Journal of Communications and Networks
    • /
    • v.18 no.6
    • /
    • pp.873-883
    • /
    • 2016
  • In this paper, we focus on maximizing weighted sum energy efficiency (EE) for a multi-cell multi-user channel. In order to solve this non-convex problem, we first decompose the original problem into a sequence of parallel subproblems which can optimized separately. For each subproblem, a base station employs dirty paper coding to maximize the EE for users within a cell while regulating interference induced to other cells. Since each subproblem can be transformed to a convex multiple-access channel problem, the proposed method provides a closed-form solution for power allocation. Then, based on the derived optimal covariance matrix for each subproblem, a local optimal solution is obtained to maximize the sum EE. Finally, simulation results show that our algorithm based on non-linear precoding achieves about 20 percent performance gains over the conventional linear precoding method.

Low Complexity Zero-Forcing Beamforming for Distributed Massive MIMO Systems in Large Public Venues

  • Li, Haoming;Leung, Victor C.M.
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.370-382
    • /
    • 2013
  • Distributed massive MIMO systems, which have high bandwidth efficiency and can accommodate a tremendous amount of traffic using algorithms such as zero-forcing beam forming (ZFBF), may be deployed in large public venues with the antennas mounted under-floor. In this case the channel gain matrix H can be modeled as a multi-banded matrix, in which off-diagonal entries decay both exponentially due to heavy human penetration loss and polynomially due to free space propagation loss. To enable practical implementation of such systems, we present a multi-banded matrix inversion algorithm that substantially reduces the complexity of ZFBF by keeping the most significant entries in H and the precoding matrix W. We introduce a parameter p to control the sparsity of H and W and thus achieve the tradeoff between the computational complexity and the system throughput. The proposed algorithm includes dense and sparse precoding versions, providing quadratic and linear complexity, respectively, relative to the number of antennas. We present analysis and numerical evaluations to show that the signal-to-interference ratio (SIR) increases linearly with p in dense precoding. In sparse precoding, we demonstrate the necessity of using directional antennas by both analysis and simulations. When the directional antenna gain increases, the resulting SIR increment in sparse precoding increases linearly with p, while the SIR of dense precoding is much less sensitive to changes in p.

The Interference Nulling using Weighted Precoding in the MIMO Cognitive Radio System (다중 안테나를 사용하는 인지무선 시스템에서 가중치 precoder를 통한 간섭 제거 기법)

  • Lee, Seon-yeong;Sohn, Sung-Hwan;Jang, Sung-Jeen;Kim, Jae-Moung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.8A
    • /
    • pp.768-776
    • /
    • 2010
  • In this paper, we consider a linear precoding for the effective spectrum sharing in multiple-input multiple-output (MIMO) cognitive radio system where a secondary user coexists with primary users. The secondary user employs the orthogonal space time block coding (OSTBC) at the transmitter. Assuming a flat fading channel and a maximum-likelihood receiver, the optimum precoder forces transmission referred to as eigen-beamforming. In this paper, to eliminate the interference, ZF criterion based eigen-beamforming is not only used but also the precoding weight is chosen to cancel the remaining interference. This weight is computed by vector's likelihood. Simulation results show stronger interference suppression capability, better SER performance, and higher capacity than the algorithm in [4].