• Title/Summary/Keyword: linear potential theory

Search Result 191, Processing Time 0.031 seconds

Wave Interaction with a Porous Circular Cylinder of Non-Uniform Porosity (비 균일한 공극율을 갖는 투과성 원기둥과 파의 상호작용)

  • Cho, Il-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.23-31
    • /
    • 2009
  • The interaction of incident monochromatic waves with a bottom-mounted vertical porous circular cylinder is investigated using the framework of the three-dimensional linear potential theory. The porosity of the circular cylinder is uniform vertically but varies in the circumferential direction. By adjusting the porosities of the circular cylinder, both the wave blocking performance of a porous semi-circular breakwater and the wave responses inside a circular harbor with an entrance are applied as calculation examples. It is found that the reflected waves, wave run-up, and wave forces are significantly reduced due to wall porosity, which are positive factors for a breakwater, and the amplification factor of a circular harbor at resonant frequencies is greatly reduced by a porous sidewall.

Buckling characteristics and static studies of multilayered magneto-electro-elastic plate

  • Kiran, M.C.;Kattimani, S.C.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.751-763
    • /
    • 2017
  • This article deals with the buckling behaviour of multilayered magneto-electro-elastic (MEE) plate subjected to uniaxial and biaxial compressive (in-plane) loads. The constitutive equations of MEE material are used to derive a finite element (FE) formulation involving the coupling between electric, magnetic and elastic fields. The displacement field corresponding to first order shear deformation theory (FSDT) has been employed. The in-plane stress distribution within the MEE plate existing due to the enacted force is considered to be equivalent to the applied in-plane compressive load in the pre-buckling range. The same stress distribution is used to derive the potential energy functional. The non-dimensional critical buckling load is accomplished from the solution of allied linear eigenvalue problem. Influence of stacking sequence, span to thickness ratio, aspect ratio, load factor and boundary condition on critical buckling load and their corresponding mode shape is investigated. In addition, static deflection of MEE plate under the sinusoidal and the uniformly distributed load has been studied for different stacking sequences and boundary conditions.

Stability analysis of transversely isotropic laminated Mindlin plates with piezoelectric layers using a Levy-type solution

  • Ghasemabadian, M.A.;Saidi, A.R.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.6
    • /
    • pp.675-693
    • /
    • 2017
  • In this paper, based on the first-order shear deformation plate theory, buckling analysis of piezoelectric coupled transversely isotropic rectangular plates is investigated. By assuming the transverse distribution of electric potential to be a combination of a parabolic and a linear function of thickness coordinate, the equilibrium equations for buckling analysis of plate with surface bonded piezoelectric layers are established. The Maxwell's equation and all boundary conditions including the conditions on the top and bottom surfaces of the plate for closed and open circuited are satisfied. The analytical solution is obtained for Levy type of boundary conditions. The accurate buckling load of laminated plate is presented for both open and closed circuit conditions. From the numerical results it is found that, the critical buckling load for open circuit is more than that of closed circuit in all boundary and loading conditions. Furthermore, the critical buckling loads and the buckling mode number increase by increasing the thickness of piezoelectric layers for both open and closed circuit conditions.

Application of Composite Grid Method for the Simulation of Oscillating Body

  • Lee, Sang-Min
    • Journal of Navigation and Port Research
    • /
    • v.27 no.6
    • /
    • pp.653-659
    • /
    • 2003
  • The main objective of this study is to estimate the hydrodynamic forces and to investigate the nonlinear behaviors of fluid motion around the oscillating body on or below a free surface. We have developed a composite grid method to solve the radiation problems. This method is applied to numerical computation of the radiation forces generated by the oscillating body. The numerical results obtained by the present method are compared with the experimental data and a linear potential theory. As a result, we can confirm the accuracy of the present method. Finally, we have evaluated the effect of viscosity on the hydrodynamic forces acting on the oscillating body.

Wave Response and Ship Motion in a Harbor Excited by Long Waves

  • Cho, Il-Hyoung;Choi, Hang-S.
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • v.2 no.1
    • /
    • pp.47-62
    • /
    • 1994
  • Herein the surge-heave-pitch motion of a ship in harbor has been analyzed within the framework of linear potential theory. The ship is assumed to be slender and moored at an arbitrary position in a rectangular harbor with a constant depth. The coast line is assumed to be straight. The ship and harbor responses to incident long waves are represented in terms of Green's function, which is the solution of tole Helmholtz equation satisfying necessary boundary conditions. An integral equation is obtained from matching condition between harbor and ocean solutions, and it is replaced by an equivalent variational form. Numerical results sallow that the ship motion can be highly amplified at the frequencies, where the harbor is resonated by the incident wave. At the resonant frequencies, the added mass for vertical motions becomes negative and the damping forte changes abruptly.

  • PDF

A Deformation Model of a Bag-Finger Skirt and the Motion Response of an ACV in Waves

  • Lee, Gyeong-Joong;Rhee, Key-Pyo
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • v.2 no.1
    • /
    • pp.29-46
    • /
    • 1994
  • In this paper, the effect of a skirt deformation on the responses of an Air Cushion Vehicle in waves is investigated. The air in the bag and plenum chamber is assumed to be compressible and to have a uniform pressure distribution in each volume. The free surface deformation is determined in the framework of a linear potential theory by replacing the cushion pressure with the pressure patch which is oscillating and translating uniformly. And the bag-finger skirt assumed to be deformed due to the pressure disturbance while its surface area remained constant. The restoring force and moment due to the deformation of bag-finger skirt from equilibrium shape is incorporated with the equations of heave and pitch motions. The numerical results of motion responses due to various ratios of the bag and cushion pressure or bag-to-finger depth ratios are shown.

  • PDF

Transmission coefficients of a floating rectangular breakwater with porous side plates

  • Cho, Il-Hyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.1
    • /
    • pp.53-65
    • /
    • 2016
  • The interaction between incident waves and a floating rectangular breakwater with the vertical porous side plates has been investigated in the context of the two-dimensional linear potential theory. The matched eigenfunction expansion method(MEEM) for multiple domains is applied to obtain the analytic solutions. The dependence of the transmitted coefficients and motion responses on the design parameters, such as porosity and protruding depth of side plates, is systematically analyzed. It is found that the non-dimensional wavelength where the sudden drop of transmission coefficients occurs, corresponds to the heave resonant frequency obtained from Ruol et al. (2013) for $\pi$-type floating breakwater. It is concluded that both properly selected porosity and deeper protruding depth of side plates are helpful in reducing the transmission coefficients and also extending the wider applicable extent of incident wavelength for performance enhancement.

On the Surge Motion of a Ship in Rectangular Harbor (항만내 계류선박의 수평운동 해석)

  • 최항순;조일형
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.1 no.1
    • /
    • pp.81-86
    • /
    • 1989
  • Herein the surge-heave-pitch motion of a ship has been analyzed within the framework of linear potential theory. The ship is assumed slender weakly moored along the centerline of a rectangular harbor with constant depth and straight coastline. The method of matched asymptotic expansion is us-ed to obtain the leading-order solution. The ship and harbor responses to incident long waves can be re-presented in terms of Green's function, which is the solution of the Helmholtz equation satisfying necessary boundary conditions. Numerical results clearly indicate the importance of the surge motion.

  • PDF

A Computational Study for Designing Electrical Contacts to MoS2 Monolayers

  • Kim, Hwi-Su;Ha, Hyeon-U
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.478-482
    • /
    • 2014
  • Graphene have renewed considerable interest in inorganic, two-dimensional materials for future electronics. However, graphene does not have a bandgap, it is limited to apply directly to transistors and logic devices. Hence, other layered materials such as molybdenum disulphide ($MoS_2$) have been investigated to address this challenge. Here, we find that the nature of contacts plays a more important role than the semiconductor itself. In order to understand the nature of $MoS_2$/metal contacts, we perform density functional theory electronic structure calculations based on linear combination of atomic for the geometry, bonding, binding energy, PDOS, LDOS and electronic structure. We choose Au as a contact metal because it is the most common contact metal. In this paper, we demonstrate $MoS_2$/Au contacts have a more promising potential in flexible nanoelectronics than $MoS_2$ itself.

  • PDF

Lateral Drifting Force on a Cylinder in Water of Finite Depths -Far Field Method- (유한(有限)깊이의 물에 떠있는 주상체(柱狀體)에 작용(作用)하는 횡표류력(橫漂流力) -운동량(運動量) 이론(理論) 방법(方法)-)

  • K.P.,Rhee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.20 no.2
    • /
    • pp.37-42
    • /
    • 1983
  • This paper presents a procedure within the framework of linear potential theory for predicting the lateral drifting forces on a cylinder floating on the free surface of a finite depth water. The disturbance of a regular incident wave caused by the presence of the floating body is represented by the sum of the diffracted and radiated wave potentials, which are determined by using Green's theorem. The lateral drifting forces are calculated by use of momentum theorem, and the scattered waves are expressed in their asymptotic forms. The computed lateral drifting forces on a Lewis form cylinder(b/T=1.25, $\sigma$=0.95) for water depth to draft ratio of 5.0 are compared with the Kyozuka's experimental results for a deep water, and found to be in good agreement. The water depth effects on drifting forces of the same model are also calculated.

  • PDF