• Title/Summary/Keyword: linear perturbation

Search Result 320, Processing Time 0.032 seconds

A Review of Fixed-Complexity Vector Perturbation for MU-MIMO

  • Mohaisen, Manar
    • Journal of Information Processing Systems
    • /
    • v.11 no.3
    • /
    • pp.354-369
    • /
    • 2015
  • Recently, there has been an increasing demand of high data rates services, where several multiuser multiple-input multiple-output (MU-MIMO) techniques were introduced to meet these demands. Among these techniques, vector perturbation combined with linear precoding techniques, such as zero-forcing and minimum mean-square error, have been proven to be efficient in reducing the transmit power and hence, perform close to the optimum algorithm. In this paper, we review several fixed-complexity vector perturbation techniques and investigate their performance under both perfect and imperfect channel knowledge at the transmitter. Also, we investigate the combination of block diagonalization with vector perturbation outline its merits.

A Minimum Crosstalk Wire Spacing Method by Linear Programming (선형프로그래밍에 의한 최소 혼신 배선간 간격조정방법)

  • 전재한;임종석
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.11
    • /
    • pp.62-72
    • /
    • 2003
  • This paper deals with a crosstalk minimization method by wire spacing. The suggested method uses linear programming method and consider crosstalk of both horizontal segments and vertical segments. In this paper, we suggest a method which can predict the coupling length between vertical segments in the final routing result using longest path algorithm. By the suggested method, we can make LP problem without integer variable. Therefore, it is much faster to solve the problem. In the case of crosstalk optimization, the suggested method optimized peak crosstalk 11.2%, and 3% total crosstalk more than wire perturbation method. The execution time of the suggested method is as fast as it takes 11 seconds when Deutsch is optimized.

Miniaturization of Circular Microstrip Antenna Using the Perturbation Effect (Perturbation 효과를 이용한 원형 마이크로스트립 안테나의 소형화)

  • Ryu Mi-Ra;Hur Jung;Woo Jong-Myung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.7 s.110
    • /
    • pp.605-614
    • /
    • 2006
  • In this paper, a 3D structure skimmer-shaped circular microstrip antenna is designed, the ends of whose both sides are made as DC(Depressed Carving part) applying perturbation effect to reduce the patch size of microstrip antenna operating at design frequency 1.575 GHz. The result shows its return loss, - 10 dB bandwidth, gain, - 3 dB beamwidth E, H-plane are -26.59 dB, 65 MHz(4.13 %), 4.66 dBd, $79^{\circ},\;87^{\circ}$ respectively. The diameter of the antenna is 85 mm, which is 12.4 % reduced compared to the size(97 mm) of general microstrip patch antenna. Therefore its area reduction is 23.2 %. Furthermore, a linear and circular polarized baseball-shaped circular microstrip antenna is designed to minimize the patch size of the antenna. This structure of antenna operating at the design frequency 1.575 GHz is applied with the optimum RC(Raised Carving part) & DC ratio and an asymptotic line angle. In case of linear polarized baseball-shaped circular microstrip antenna, the patch size of the antenna is 74 mm, which is 41.8 % area reduction compared to general microstrip patch antenna. In case of circular polarized baseball-shaped circular microstrip antenna, the diameter of patch is 82 mm, which is 28.5 % area reduction compare to general microstrip patch antenna linear polarized. We have verified that the perturbation effect can be applied to minimize the circular microstrip antenna.

Anti-Reset windup basd compensation method for state constrained control systems (리셋 와인드엎 방지법에 기초한 상태 제한이 존재하는 제어 시스템의 보상 방법)

  • Park, Jong-Koo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.5
    • /
    • pp.511-520
    • /
    • 1999
  • An anti-reset windup (ARW) based compensation method for state constrained control systems is studied. First, a linear controller is constructed to give a desirable nominal performance ignoring state-constraints of a plant. Then, an additional compensator is introduced to provide smooth performance degradation under state-constraints of the plant. This paper focuses on the effective design method of the additional compensator. By minimizing a reasonable performance index, the proposed compensator is expressed in terms of theplant and ocntroller parameters. The resulting dynamics of the compensated controller exhibits the dominant part of the linear closed-loop system which can be seen from the singular perturbation model reducton theory. THe proposed method guarantees total stability of overall resulting systems if linear controllers were constructed to meet certain condition.

  • PDF

Free vibration analysis of axially moving beam under non-ideal conditions

  • Bagdatli, Suleyman M.;Uslu, Bilal
    • Structural Engineering and Mechanics
    • /
    • v.54 no.3
    • /
    • pp.597-605
    • /
    • 2015
  • In this study, linear vibrations of an axially moving beam under non-ideal support conditions have been investigated. The main difference of this study from the other studies; the non-ideal clamped support allow minimal rotations and non-ideal simple support carry moment in minimal orders. Axially moving Euler-Bernoulli beam has simple and clamped support conditions that are discussed as combination of ideal and non-ideal boundary with weighting factor (k). Equations of the motion and boundary conditions have been obtained using Hamilton's Principle. Method of Multiple Scales, a perturbation technique, has been employed for solving the linear equations of motion. Linear equations of motion are solved and effects of different parameters on natural frequencies are investigated.

Short utterance speaker verification using PLDA model adaptation and data augmentation (PLDA 모델 적응과 데이터 증강을 이용한 짧은 발화 화자검증)

  • Yoon, Sung-Wook;Kwon, Oh-Wook
    • Phonetics and Speech Sciences
    • /
    • v.9 no.2
    • /
    • pp.85-94
    • /
    • 2017
  • Conventional speaker verification systems using time delay neural network, identity vector and probabilistic linear discriminant analysis (TDNN-Ivector-PLDA) are known to be very effective for verifying long-duration speech utterances. However, when test utterances are of short duration, duration mismatch between enrollment and test utterances significantly degrades the performance of TDNN-Ivector-PLDA systems. To compensate for the I-vector mismatch between long and short utterances, this paper proposes to use probabilistic linear discriminant analysis (PLDA) model adaptation with augmented data. A PLDA model is trained on vast amount of speech data, most of which have long duration. Then, the PLDA model is adapted with the I-vectors obtained from short-utterance data which are augmented by using vocal tract length perturbation (VTLP). In computer experiments using the NIST SRE 2008 database, the proposed method is shown to achieve significantly better performance than the conventional TDNN-Ivector-PLDA systems when there exists duration mismatch between enrollment and test utterances.

Non-linear vibration and stability analysis of a partially supported conveyor belt by a distributed viscoelastic foundation

  • Ghayesh, M.H.;Khadem, S.E.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.1
    • /
    • pp.17-32
    • /
    • 2007
  • The main source of transverse vibration of a conveyor belt is frictional contact between pulley and belt. Also, environmental characteristics such as natural dampers and springs affect natural frequencies, stability and bifurcation points of system. These phenomena can be modeled by a small velocity fluctuation about mean velocity. Also, viscoelastic foundation can be modeled as the dampers and springs with continuous characteristics. In this study, non-linear vibration of a conveyor belt supported partially by a distributed viscoelastic foundation is investigated. Perturbation method is applied to obtain a closed form analytic solutions. Finally, numerical simulations are presented to show stiffness, damping coefficient, foundation length, non-linearity and mean velocity effects on location of bifurcation points, natural frequencies and stability of solutions.

Sensor Signal Processing for Estimating Gradient Values using Perturbation Input (섭동 입력을 사용한 구배 값 추정용 센서 신호 처리)

  • Lee, Sooyong
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.251-258
    • /
    • 2017
  • According to recent studies by scientists about how to search for food, homes and the mates, it is found that the gradient information plays a key role. From cells to insects and large animals, they mostly either have special sensing organism or use a strategy to measure the gradient. Use of a perturbation as an additional input is introduced for sensor signal processing in order to get the gradient information. Different from typical approach, which calculates the gradient from differentiation, the proposed processing is done by a form of integration, thus it is very robust to noise. Discrete time domain analyses are given for one, two and three input functions for the estimation of the gradients. The amplitude and the frequency of the perturbation are two important parameters for this approach. A quantitative index to measure the effects of the amplitude is developed based on the linear regression analysis. The frequency of the perturbation is to be selected high enough to finish one period of the perturbation before the property is changed significantly with respect to time. Another quantitative index is proposed for guiding the selection of the frequency.

On a Stability Region of Liner Time-Varying Systems (선형시변 시스템의 안정도 영역에 관하여)

  • 최종호;장태정
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.7
    • /
    • pp.484-489
    • /
    • 1988
  • Sufficient conditions concerning the perturbation region of system parameters, which guarantee the asymptotic stability of linear time- varying systems, are presented. These conditions are obtained by Lyapunov function approach for continuous-time and discrete-time systems. Also, a computational algorithm using nonlinear programming is proposed for finding the maximum perturbation region which satisfies the sufficient condition for the continuous-time systems. The technique of finding the solution for the continuous-time systems can also be applied to the discrete-time systems. In the continuous-time case, it is shown by an example that the method proposed in this paper yields much larger perturbation region of parameters than other previously reported results. An example of the perturbation region of system paramters for the discrete-time system is also given.

  • PDF

Eigenvalue Perturbation for Controller Parameter and Small Signal Stability Analysis of Large Scale Power Systems (제어기정수에 대한 고유치 PERTURBATION과 대규모 전력계통의 미소신호안정도 해석)

  • Shim, Kwan-Shik;Song, Sung-Gun;Moon, Chae-Ju;Lee, Ki-Young;Nam, Hae-Kon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.11
    • /
    • pp.577-584
    • /
    • 2002
  • This paper presents a novel approach based on eigenvalue perturbation of augmented matrix(AMEP) to estimate the eigenvalue for variation of controller parameter. AMEP is a useful tool in the analysis and design of large scale power systems containing many different types of exciters, governors and stabilizers. Also, it can be used to find possible sources of instability and to determine the most sensitivity parameters for low frequency oscillation modes. This paper describes the application results of AMEP algorithm with respect to all controller parameter of KEPCO systems. Simulation results for interarea and local mode show that the proposed AMEP algorithm can be used for turning controller parameter, and verifying system data and linear model.