• Title/Summary/Keyword: linear perturbation

Search Result 320, Processing Time 0.027 seconds

Robust Depth and Course Control of AUV Using LMI-based $H_{\infty}$ Servo Control (LMI에 기초한 $H_{\infty}$ 서보제어를 이용한 AUV의 강인한 자동 심도 및 방향제어)

  • 양승윤;김인수;이만형
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.38-46
    • /
    • 2000
  • In this paper, robust depth and course controllers of AUV(autonomous underwater vehicles) using LMI-based H$_{\infty}$ servo control are proposed. The $H_{\infty}$ servo problem is modified to an $H_{\infty}$ control problem for the generalized plant that includes a reference input mode, and then a sub-optimal solution that satisfies a given performance criteria is calculated by LMI(Linear Matrix Inequality) approach. The robust depth and course controllers are designed to be satisfied the robust stability about the modeling error generated from the perturbation of the hydrodynamic coefficients and the robust tracking property under sea wave and tide disturbances. The performances of the designed controllers are evaluated by computer simulations, and these simulation results show the applicability of the proposed robust depth and course controller.

  • PDF

The Parametric Sensitivity Analyses of linear System Relative to the Characteristic Ratios of Coefficient(II) : K-Polynomial Case (계수의 특성비에 대한 선형계의 파라미터적 감도해석(II) : K-다항식의 경우)

  • 김영철;김근식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.4
    • /
    • pp.295-303
    • /
    • 2004
  • Previously it has been shown that the all pole systems resulting good time responses can be characterized by so called K-polynomial. The polynomial is defined in terms of the principal characteristic ratio $\alpha_1$ and the generalized time constant $\tau$ . In this paper, Part II presents several sensitivity analyses of such systems with respect to $\alpha_1$ and $\tau$ changes. We first deal with the root sensitivity to the perturbation of $\alpha_1$ . By way of determining the unnormalized function sensitivity, both time response sensitivity and frequency response sensitivity are derived. Finally, the root sensitivity relative to $\tau$ change is also analyzed. These results provide some useful insight and background theory when we select of and l to compose a reference model of which denominator is a K-polynomial, which is illustrated by examples.

NUMERICAL INTEGRATION METHOD FOR SINGULAR PERTURBATION PROBLEMS WITH MIXED BOUNDARY CONDITIONS

  • Andargie, Awoke;Reddy, Y.N.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.5_6
    • /
    • pp.1273-1287
    • /
    • 2008
  • In this paper, the numerical integration method for general singularly perturbed two point boundary value problems with mixed boundary conditions of both left and right end boundary layer is presented. The original second order differential equation is replaced by an approximate first order differential equation with a small deviating argument. By using the trapezoidal formula we obtain a three term recurrence relation, which is solved using Thomas Algorithm. To demonstrate the applicability of the method, we have solved four linear (two left and two right end boundary layer) and one nonlinear problems. From the results, it is observed that the present method approximates the exact or the asymptotic expansion solution very well.

  • PDF

SOLVING SECOND ORDER SINGULARLY PERTURBED DELAY DIFFERENTIAL EQUATIONS WITH LAYER BEHAVIOR VIA INITIAL VALUE METHOD

  • GEBEYAW, WONDWOSEN;ANDARGIE, AWOKE;ADAMU, GETACHEW
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.3_4
    • /
    • pp.331-348
    • /
    • 2018
  • In this paper, an initial value method for solving a class of singularly perturbed delay differential equations with layer behavior is proposed. In this approach, first the given problem is modified in to an equivalent singularly perturbed problem by approximating the term containing the delay using Taylor series expansion. Then from the modified problem, two explicit Initial Value Problems which are independent of the perturbation parameter, ${\varepsilon}$, are produced: the reduced problem and boundary layer correction problem. Finally, these problems are solved analytically and combined to give an approximate asymptotic solution to the original problem. To demonstrate the efficiency and applicability of the proposed method three linear and one nonlinear test problems are considered. The effect of the delay on the layer behavior of the solution is also examined. It is observed that for very small ${\varepsilon}$ the present method approximates the exact solution very well.

Dynamic Modeling of an Fine Positioner Using Magnetic Levitation (자기 부상 방식 미세 운동 기구의 동적 모델링)

  • Jeong, Gwang-Seok;Baek, Yun-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1166-1174
    • /
    • 2000
  • In this paper, we introduce a positioner based on magnetic levitation to eliminate the friction which is the most severe effect to limit high resolution on the micro level. Differently from existing electromagnetic device, the proposed positioner consists of air core solenoid and permanent magnet. Although the combination produces small magnetic force, it is suitable for realizing micro motion repeatedly without the accumulation of error because there is no hysteresis caused by ferromagnetic materials, no eddy current loss, no flux saturation. First, the approximate modeling of stiffness and damping effects between the magnetic elements is made and verified experimentally. Then, we have formulated the dynamic equation of one d.o.f magnetic levitation positioner using linear perturbation method and discussed the necessity of optimization for the chief design parameters to maximize the stability performance.

Accurate semi-analytical solution for nonlinear vibration of conservative mechanical problems

  • Bayat, Mahmoud;Pakar, Iman
    • Structural Engineering and Mechanics
    • /
    • v.61 no.5
    • /
    • pp.657-661
    • /
    • 2017
  • In this paper, it has been tried to propose a new semi analytical approach for solving nonlinear vibration of conservative systems. Hamiltonian approach is presented and applied to high nonlinear vibration systems. Hamiltonian approach leads us to high accurate solution using only one iteration. The method doesn't need any small perturbation and sufficiently accurate to both linear and nonlinear problems in engineering. The results are compared with numerical solution using Runge-Kutta-algorithm. The procedure of numerical solution are presented in detail. Hamiltonian approach could be simply apply to other powerfully non-natural oscillations and it could be found widely feasible in engineering and science.

Mixed $\textrm{H}_2/\textrm{H}_\infty$ Robust Control with Diagonal Structured Uncertainty

  • Bambang, Riyanto;Uchida, Kenko;Shimemura, Etsujiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.575-580
    • /
    • 1992
  • Mixed H$_{2}$/H$_{\infty}$ robust control synthesis is considered for finite dimensional linear time-invariant systems under the presence of diagonal structured uncertainties. Such uncertainties arise for instance when there is real perturbation in the nominal model of the state space system or when modeling multiple (unstructured) uncertainty at different locations in the feedback loop. This synthesis problem is reduced to convex optimization problem over a bounded subset of matrices as well as diagonal matrix having certain structure. For computational purpose, this convex optimization problem is further reduced into Generalized Eigenvalue Minimization Problem where a powerful algorithm based on interior point method has been recently developed..

  • PDF

Performance Comparison of Automatic Detection of Laryngeal Diseases by Voice (후두질환 음성의 자동 식별 성능 비교)

  • Kang Hyun Min;Kim Soo Mi;Kim Yoo Shin;Kim Hyung Soon;Jo Cheol-Woo;Yang Byunggon;Wang Soo-Geun
    • MALSORI
    • /
    • no.45
    • /
    • pp.35-45
    • /
    • 2003
  • Laryngeal diseases cause significant changes in the quality of speech production. Automatic detection of laryngeal diseases by voice is attractive because of its nonintrusive nature. In this paper, we apply speech recognition techniques to detection of laryngeal cancer, and investigate which feature parameters and classification methods are appropriate for this purpose. Linear Predictive Cepstral Coefficients (LPCC) and Mel-Frequency Cepstral Coefficients (MFCC) are examined as feature parameters, and parameters reflecting the periodicity of speech and its perturbation are also considered. As for classifier, multilayer perceptron neural networks and Gaussian Mixture Models (GMM) are employed. According to our experiments, higher order LPCC with the periodic information parameters yields the best performance.

  • PDF

A Study on the Engine-CPP Control of a Ship Propulsion System (선박 추진 시스템의 엔진-CPP 통합적 제어에 관한 연구)

  • 김영복
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.427-432
    • /
    • 1998
  • There are many demands for ship control system and many studies have been proposed. For example, if a ship diesel engine is operated by consolidated control with Controllable Pitch Propeller(CPP), the minimum fuel consumption is achieved, satisfying the demanded ship speed. For this, it is necessary that the ship is operated on the ideal operating line which satisfies the minimum fuel consumption. In this context of view, this paper presents a controller design method for a ship propulsion system with CPP by Linear Matrix Inequality(LMI) which satisfies the given $H_{\infty}$ control performance and robust stability in the presence of physical parameter perturbations. The validity and applicability of this approach are illustrated through a simulation in the all operating ranges.

  • PDF

A Robust Model Reference Adaptive Control with a Modified $\sigma$-modification algorithm (새로운 $\sigma$-변형 알고리즘을 사용한 강인한 기준모델 적응제어)

  • 이호진;정종대;최계근
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.9
    • /
    • pp.1322-1331
    • /
    • 1989
  • This paper proposes a new adaptation algorithm with which a model reference adaptive control can give a local boundedness of the tracking error applied to a continuous-time linear time-invariant single-input single-output plant whose reduced-order model is of relative degree 1 and whose unmodeled dynamics may be represented in a sigular perturbation form. With the addition of an offset term and an extra adaptation structure, this algorithm is shown to have a robustness property in the sense that this gives zero residual tracking errors when the unmodeled dynamics are disappeared.

  • PDF