• 제목/요약/키워드: linear parameters

검색결과 3,862건 처리시간 0.029초

유한 요소법에 의한 2자유도 스텝모터의 설계 (Design of Prototype Rotary-Lineat Step Motor by the Finite Element Method)

  • 정태경;한송엽;원종수
    • 대한전기학회논문지
    • /
    • 제35권12호
    • /
    • pp.567-572
    • /
    • 1986
  • In this paper, a new type of step motor with two degree of mechanical freedom, which is named rotary-Linear Step Motor(RLSM), is presented. Its rotor axis can perform linear and rotary motions either separately or simultaneously. This paper discribes the design of RLSM using finite element method in which the magnetic saturation effect of the iron core is taken into account. The design parameters such as torques, forces and inductances are obtained from the computed magnetic vector potentials. A new type of Rotary-Linear Step Motor was constructed. The calculated parameters agree well with measurements.

  • PDF

Optimal Restrictions on Regression Parameters For Linear Mixture Model

  • Ahn, Jung-Yeon;Park, Sung-Hyun
    • Journal of the Korean Statistical Society
    • /
    • 제28권3호
    • /
    • pp.325-336
    • /
    • 1999
  • Collinearity among independent variables can have severe effects on the precision of response estimation for some region of interest in the experiments with mixture. A method of finding optimal linear restriction on regression parameter in linear model for mixture experiments in the sense of minimizing integrated mean squared error is studied. We use the formulation of optimal restrictions on regression parameters for estimating responses proposed by Park(1981) by transforming mixture components to mathematically independent variables.

  • PDF

Robust adaptive control of linear time-varying systems which are not necessarily slowly varying

  • Song, Chan-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.1424-1429
    • /
    • 1990
  • This paper presents an indirect adaptive control scheme for discrete linear systems whose parameters are not necessrily slowly varying. It is assumed that system parameters are modelled as linear combinations of known bounded functions with unknown constant coefficients. Unknown coefficients are estimated using a recursive least squares algorithm with a dead zone and a forgetting factor. A control law which makes the estimated model exponentially stable is constructed. With this control law and a state observer, all based on the parameter estimates, it is shown that the resulting closed-loop system is globally stable and robust to bounded external disturbances and small unmodelled plant uncertainties.

  • PDF

다양한 곡률을 가진 공기 동압 베어링의 축방향 부하특성 해석 (Analysis of Axial Load Characteristics of Air-Dynamic Bearings of Various Curvatures)

  • 최우천;신용호;최정환
    • 한국정밀공학회지
    • /
    • 제17권3호
    • /
    • pp.129-135
    • /
    • 2000
  • Air-dynamic bearings are increasingly used in supporting small high-speed rotating bodies. This study investigates the effects of design parameters on the axial stiffness of spiral-grooved air bearings of various curvatures. Design parameters are fundamental clearance, groove depth, and bearing number. The pressure distribution at the clearance between the stator and rotor of the bearing is obtained by solving the Reynolds equation, and the supporting load and the axial linear stiffness are calculated from the pressure distribution. It is found that a larger curvature increases the axial linear stiffness more and that there exist an optimal groove depth for the linear stiffness of the air bearing. It is also found that the linear stiffness has a linear relationship with the bearing number.

  • PDF

GACV for partially linear support vector regression

  • Shim, Jooyong;Seok, Kyungha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권2호
    • /
    • pp.391-399
    • /
    • 2013
  • Partially linear regression is capable of providing more complete description of the linear and nonlinear relationships among random variables. In support vector regression (SVR) the hyper-parameters are known to affect the performance of regression. In this paper we propose an iterative reweighted least squares (IRWLS) procedure to solve the quadratic problem of partially linear support vector regression with a modified loss function, which enables us to use the generalized approximate cross validation function to select the hyper-parameters. Experimental results are then presented which illustrate the performance of the partially linear SVR using IRWLS procedure.

시변 파라메터를 갖는 선형시스템의 균형화된 모델 간략화 (A Balanced Model Reduction for Linear Parameter Varying Systems)

  • 류석환
    • 제어로봇시스템학회논문지
    • /
    • 제8권5호
    • /
    • pp.351-356
    • /
    • 2002
  • This papaer deals with a model reduction problem for linear systems with time varying parameters. For this problem, a controllability Grammian and an observability Grammian are introduced and computed by solving linear matrix inequalities. Using the controllability/observability Grammian, a balanced state space realization for linear parameter varying systems is obtained. From the balanced state space realization, a reduced model can be obtained by truncating not only states but also time varying parameters and an upper bound of the model reduction error is derived as well.

Holstein 젖소의 선형심사형질과 등급형질에 대한 유전변이 추정 (Estimation of Genetic Variations for Linear Type Traits and Composite Traits on Holstein Cows)

  • 이득환
    • Journal of Animal Science and Technology
    • /
    • 제48권2호
    • /
    • pp.161-168
    • /
    • 2006
  • Genetic parameters for linear type and composite traits were estimated by using Bayesian inference via Gibbs sampling with a multiple threshold animal model in Holstein cows. Fifteen linear type traits and 5 composite traits were included to estimate genetic variance and covariance components in the model. In this study, 30,204 records were obtained in the cows from 305 sires. Heritability estimates for linear type traits had the estimates as high as 0.28~0.64. Heritability estimates for composite traits were also high, when the traits were assumed to be categorical traits. Final score was more correlated with the composite traits than with the linear type traits.

선형 및 비선형 TLD의 지진응답 제어성능 평가 (Seismic Response Control Performance of Linear and Nonlinear TLD Models)

  • 이상현;우성식;정란
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.519-526
    • /
    • 2006
  • This paper compares the seismic response control performance of linear and non-linear models fer tuned liquid damper (TLD). The existing linear and nonlinear TLD models were used for the numerical analysis of single degree of freedom (SDOF) and multi degree of freedom (MDOF) systems with TLD. The nonlinear model considers the variation of the frequency and damping of the TLD with varying excitation amplitude while the linear one has the invariant parameters. Numerical analysis results from SDOF systems indicate that the nonlinear model shows about 5% better control performance than linear one when the mass ratio is 2% and the optimal parameters for reducing peak responses are dependent on the characteristics of the excitation earthquake loads.

  • PDF

궤도민감도 분석에 기반하여 복입력 전력시스템 안정화 장치(Dual-Input PSS)의 비선형 파라미터 최적화 기법 (Optimal Tuning of Nonlinear Parameters of a Dual-Input Power System Stabilizer Based on Analysis of Trajectory Sensitivities)

  • 백승묵;박정욱
    • 전기학회논문지
    • /
    • 제57권6호
    • /
    • pp.915-923
    • /
    • 2008
  • This paper focuses on optimal tuning of nonlinear parameters of a dual-input power system stabilizer(dual-input PSS), which can improve the system damping performance immediately following a large disturbance. Until recently, various PSS models have developed to bring stability and reliability to power systems, and some of these models are used in industry applications. However, due to non-smooth nonlinearities from the interaction between linear parameters(gains and time constants of linear controllers) and nonlinear parameters(saturation output limits), the output limit parameters cannot be determined by the conventional tuning methods based on linear analysis. Only ad hoc tuning procedures('trial and error' approach) have been used. Therefore, the steepest descent method is applied to implement the optimal tuning of the nonlinear parameters of the dual-input PSS. The gradient required in this optimization technique can be computed from trajectory sensitivities in hybrid system modeling with the differential-algebraic-impulsive-switched(DAIS) structure. The optimal output limits of the dual-input PSS are evaluated by time-domain simulation in both a single machine infinite bus(SMIB) system and a multi-machine power system in comparison with those of a single-input PSS.