• Title/Summary/Keyword: linear modeling

Search Result 1,735, Processing Time 0.027 seconds

Forced Vibration of Car Seat and mannequin System (자동차 시트 및 마네킹 시스템의 강제 진동)

  • Kim, Seong-Geol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.122-132
    • /
    • 2000
  • A simplified modeling approach of forced vibration for occupied car seats was demonstrated by using a mathematical model presented in 'Free Vibration of Car seat and Mannequin System' nonlinear and linear equations of motions were rederived for forced vibration and the transfer function was used to calculate the frequency response function. The experimental apparatus were set up and hydraulic shaker was used to obtain the system responses. Through the tests mannequin's head had a lot of problems and the responses with a head and without a head were measured. To explore the effects of linear dampings and friction moments at the joints linear analyses were performed. New sets of linear spring and damping coefficients and torsional dampings at the joints were calculated through parameter study to match up with experimental results. Good agreement between experimental and simulation frequency response estimates were obtained both in terms of locations of resonances and system deflection shapes at resonance indicating that this is a feasible method of modeling seated occupants.

  • PDF

Vibration of Car Seat and Mannequin System II (자동차 시트 및 마네킹 시스템의 진동 II)

  • Kim, Seong-Keol;Kim, Joon-Hyun;Park, Ki-Hong
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.398-403
    • /
    • 2001
  • A simplified modeling approach of forced vibration for occupied car seats was demonstrated by using a mathematical model presented in previous paper. Nonlinear and linear equations of motions were rederived for forced vibration, and the transfer function was used to calculate the frequency response function. The experimental apparatus were set up and hydraulic shaker was used to obtain the system responses. Through the tests, mannequin's head had a lot of problems, and the responses with a head and without a head were measured. To explore the effects of linear dampings and friction moments at the joints, linear analyses were performed. New sets of linear spring and damping coefficients, and torsional dampings at the joints were calculated through parameter study to match up with experimental results. Good agreement between experimental and simulation frequency response estimates were obtained both in terms of locations of resonances and system deflection shapes at resonance, indicating that this is a feasible method of modeling seated occupants.

  • PDF

Fuzzy Linear Parameter Varying Modeling and Control of an Anti-Air Missile

  • Mehrabian, Ali Reza;Hashemi, Seyed Vahid
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.3
    • /
    • pp.324-328
    • /
    • 2007
  • An analytical framework for fuzzy modeling and control of nonlinear systems using a set of linear models is presented. Fuzzy clustering is applied on the aerodynamic coefficients of a missile to obtain an optimal number of rules in a Tagaki-Sugeno fuzzy rule-set. Next, the obtained membership functions and rule-sets are applied to a set of linear optimal controllers towards extraction of a global controller. Reported simulations demonstrate the performance, stability, and robustness of the controller.

The study on the Optimal Control of Linear Track Cart Double Inverted Pendulum using neural network (신경망을 이용한 Liner Track Cart Double Inverted Pendulum의 최적제어에 관한 연구)

  • 金成柱;李宰炫;李尙培
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.227-233
    • /
    • 1996
  • The Inverted Pendulum has been one of most popular nonlinear dynamic systems for the exploration of control techniques. This paper presents a new linear optimal control techniques and nonlinear neural network learning methods. The multiayered neural networks are used to add nonlinear effects on the linear optimal regulator(LQR). The new regulator can compensate nonlinear system uncertainties that are not considered in the LQR design, and can tolerated a wider range of uncertainties than the LQR alone. The new regulator has two neural networks for modeling and control. The neural network for modeling is used to obtain a more accurate model than the given mathematical equations. The neural network for control is used to overcome deficiencies by adding corrections to the linear coefficients of the LQR and by adding nonlinear effects on the LQR. Computer simulations are performed to show the applicability and a more robust regulator than the LQR alone.

  • PDF

A study of robust controller design for turret servo system (터렛 서보시스템의 강인한 제어기 설계연구)

  • 김인환;김종화;이만형;배종일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.22-27
    • /
    • 1989
  • In this paper influences of disturbances and Modeling errors are qualitatively for the linear approximation model of turret servo system, and then LQG/LTR Control theory is applied to linear approximation model in order to design a controller which satisfies robustneas/stability for the modeling errors. Finally the performance and robustness of designed controller for the given plant are verified through the simulation.

  • PDF

Fuzzy Model of Semiconductor Devices (반도체 소자의 퍼지모델)

  • 강근택;권태하
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.12
    • /
    • pp.2001-2009
    • /
    • 1989
  • This study suggests the use of fuzzy model in the semiconductor devices modeling as a black box approach. When membership functions of fuzzy sets used in a fuzzy model are simple piecewise-linear functions, the fuzzy model can be reresented in a simple equation. To show that the fuzzy model can be very realistic and simple when used in semiconductor devices modeling, we construct fuzzy models for bipolar transistor, MOSFET and GaAs FET, and compare those with canonical piecewise-linear models.

  • PDF

Modeling of unreinforced brick walls under in-plane shear & compression loading

  • Kalali, Arsalan;Kabir, Mohammad Zaman
    • Structural Engineering and Mechanics
    • /
    • v.36 no.3
    • /
    • pp.247-278
    • /
    • 2010
  • The study of the seismic vulnerability of masonry buildings requires structural properties of walls such as stiffness, ultimate load capacity, etc. In this article, a method is suggested for modeling the masonry walls under in-plane loading. At the outset, a set of analytical equations was established for determining the elastic properties of an equivalent homogeneous material of masonry. The results for homogenized unreinforced brick walls through detailed modeling were compared in different manners such as solid and perforated walls, in-plane and out-of-plane loading, etc, and it was found that this method provides suitable accuracy in estimation of the wall linear properties. Furthermore, comparison of the results of proposed modeling with experimental out coming indicated that this model considers the non linear properties of the wall such as failure pattern, performance curve and ultimate strength, and would be appropriate to establish a parametric study on those prone factors. The proposed model is complicated; therefore, efforts need to be made in order to overcome the convergency problems which will be included in this study. The nonlinear model is basically semi-macro but through a series of actions, it can be simplified to a macro model.

Nonlinear Modeling of Super-RENS Disc Systems Using a SCPWL Model (SCPWL 모델을 이용한 Super-RENS 디스크 시스템의 비선형 모델링)

  • Seo, Man-Jung;Jeon, Seok-Hun;Im, Sung-Bin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.12
    • /
    • pp.24-30
    • /
    • 2010
  • The super-resolution near-field structure (super-RENS) disc system is the most promising one for next-generation optical data storage systems to succeed the Blu-ray disc (BD). In this paper, we apply the simplicial canonical piecewise-linear (SCPWL) model to modeling super-RENS read-out signals since reliable and accurate channel modeling is essential for performance analysis and development of equalizers for super-RENS systems. The validity of this model is verified using radio frequency (RF) signal samples obtained from a super-RENS disc, The experiment results on modeling indicate that the SCPWL model can be efficiently utilized for the nonlinear modeling of the super-RENS systems.

Comparison of Seismic Responses of Seismically Isolated NPP Containment Structures using Equivalent Linear- and Nonlinear-Lead-Rubber Bearing Modeling (등가선형 및 비선형 납-고무받침 모델을 이용한 면진된 원전구조물의 지진응답의 비교)

  • Lee, Jin Hi;Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • In order to perform a soil-isolation-structure interaction analysis of seismically isolated nuclear power plant (NPP) structures, the nonlinear behavior of a seismic isolation system may be converted to an equivalent linear model used in frequency domain analysis. Seismic responses for seismically isolated NPP containment structures subjected to a simple artificial acceleration history and different site class earthquakes are evaluated for the equivalent-linear and nonlinear models that have been applied to lead-rubber bearing (LRB) modeling. It can be observed that the maximum displacements of the equivalent linear model are larger than that of the nonlinear model. From the floor response spectrum analysis for the top of NPP containment structures, it can be observed that the spectral acceleration of an equivalent linear model at about 0.5 Hz frequency is about 2~3 times larger than that of a nonlinear model.

Multiple linear regression and fuzzy linear regression based assessment of postseismic structural damage indices

  • Fani I. Gkountakou;Anaxagoras Elenas;Basil K. Papadopoulos
    • Earthquakes and Structures
    • /
    • v.24 no.6
    • /
    • pp.429-437
    • /
    • 2023
  • This paper studied the prediction of structural damage indices to buildings after earthquake occurrence using Multiple Linear Regression (MLR) and Fuzzy Linear Regression (FLR) methods. Particularly, the structural damage degree, represented by the Maximum Inter Story Drift Ratio (MISDR), is an essential factor that ensures the safety of the building. Thus, the seismic response of a steel building was evaluated, utilizing 65 seismic accelerograms as input signals. Among the several response quantities, the focus is on the MISDR, which expresses the postseismic damage status. Using MLR and FLR methods and comparing the outputs with the corresponding evaluated by nonlinear dynamic analyses, it was concluded that the FLR method had the most accurate prediction results in contrast to the MLR method. A blind prediction applying a set of another 10 artificial accelerograms also examined the model's effectiveness. The results revealed that the use of the FLR method had the smallest average percentage error level for every set of applied accelerograms, and thus it is a suitable modeling tool in earthquake engineering.