• 제목/요약/키워드: linear mixed effects model

검색결과 109건 처리시간 0.021초

로버스트 선형혼합모형을 이용한 필드시험 데이터 분석 (Analysis of Field Test Data using Robust Linear Mixed-Effects Model)

  • 홍은희;이영조;옥유진;나명환;노맹석;하일도
    • 응용통계연구
    • /
    • 제28권2호
    • /
    • pp.361-369
    • /
    • 2015
  • 연속측도의 반응변수가 반복측정된 실험 자료의 분석을 위해 흔히 선형혼합모형이 사용된다. 그러나, 잔차의 분포가 이분산성이거나 비정규성을 가질 때 표준적인 선형혼합모형은 적절하지 않은 결과를 가져온다. 잔차의 분포가 두터운 꼬리를 가진 비정규분포를 보이는 타이어 필드시험 데이터를 로버스트 선형혼합모형에 적합시킴으로써 보다 더 정확하고 신뢰할 수 있는 분석결과를 얻을 수 있다. 추가적으로 신뢰성 분석 결과를 제시한다.

A Comparison of Influence Diagnostics in Linear Mixed Models

  • Lee, Jang-Taek
    • Communications for Statistical Applications and Methods
    • /
    • 제10권1호
    • /
    • pp.125-134
    • /
    • 2003
  • Standard estimation methods for linear mixed models are sensitive to influential observations. However, tools and concepts for linear mixed model diagnostics are rudimentary until now and research is heavily demanded in linear mixed models. In this paper, we consider two diagnostics to evaluate the effects of individual observations in the estimation of fixed effects for linear mixed models. Those are Cook's distance and COVRATIO. Results of our limited simulation study suggest that the Cook's distance is not good statistical quantity in linear mixed models. Also calibration point for COVRATIO seems to be quite conservative.

Poisson linear mixed models with ARMA random effects covariance matrix

  • Choi, Jiin;Lee, Keunbaik
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권4호
    • /
    • pp.927-936
    • /
    • 2017
  • To analyze longitudinal count data, Poisson linear mixed models are commonly used. In the models the random effects covariance matrix explains both within-subject variation and serial correlation of repeated count outcomes. When the random effects covariance matrix is assumed to be misspecified, the estimates of covariates effects can be biased. Therefore, we propose reasonable and flexible structures of the covariance matrix using autoregressive and moving average Cholesky decomposition (ARMACD). The ARMACD factors the covariance matrix into generalized autoregressive parameters (GARPs), generalized moving average parameters (GMAPs) and innovation variances (IVs). Positive IVs guarantee the positive-definiteness of the covariance matrix. In this paper, we use the ARMACD to model the random effects covariance matrix in Poisson loglinear mixed models. We analyze epileptic seizure data using our proposed model.

Credibility estimation via kernel mixed effects model

  • Shim, Joo-Yong;Kim, Tae-Yoon;Lee, Sang-Yeol;Hwa, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권2호
    • /
    • pp.445-452
    • /
    • 2009
  • Credibility models are actuarial tools to distribute premiums fairly among a heterogeneous group of policyholders. Many existing credibility models can be expressed as special cases of linear mixed effects models. In this paper we propose a nonlinear credibility regression model by reforming the linear mixed effects model through kernel machine. The proposed model can be seen as prediction method applicable in any setting where repeated measures are made for subjects with different risk levels. Experimental results are then presented which indicate the performance of the proposed estimating procedure.

  • PDF

Testing Homogeneity for Random Effects in Linear Mixed Model

  • Ahn, Chul H.
    • Communications for Statistical Applications and Methods
    • /
    • 제7권2호
    • /
    • pp.403-414
    • /
    • 2000
  • A diagnostic tool for testing homogeneity for random effects is proposed in unbalanced linear mixed model based on score statistic. The finite sample behavior of the test statistic is examined using Monte Carlo experiments examine the chi-square approximation of the test statistic under the null hypothesis.

  • PDF

Estimation of Small Area Proportions Based on Logistic Mixed Model

  • Jeong, Kwang-Mo;Son, Jung-Hyun
    • 응용통계연구
    • /
    • 제22권1호
    • /
    • pp.153-161
    • /
    • 2009
  • We consider a logistic model with random effects as the superpopulation for estimating the small area pro-portions. The best linear unbiased predictor under linear mired model is popular in small area estimation. We use this type of estimator under logistic mixed motel for the small area proportions, on which the estimation of mean squared error is also discussed. Two kinds of estimation methods, the parametric bootstrap and the linear approximation will be compared through a Monte Carlo study in the respects of the normality assumption on the random effects distribution and also the magnitude of sample sizes on the approximation.

Analysis of Break in Presence During Game Play Using a Linear Mixed Model

  • Chung, Jae-Yong;Yoon, Hwan-Jin;Gardne, Henry J.
    • ETRI Journal
    • /
    • 제32권5호
    • /
    • pp.687-694
    • /
    • 2010
  • Breaks in presence (BIP) are those moments during virtual environment (VE) exposure in which participants become aware of their real world setting and their sense of presence in the VE becomes disrupted. In this study, we investigate participants' experience when they encounter technical anomalies during game play. We induced four technical anomalies and compared the BIP responses of a navigation mode game to that of a combat mode game. In our analysis, we applied a linear mixed model (LMM) and compared the results with those of a conventional regression model. Results indicate that participants felt varied levels of impact and recovery when experiencing the various technical anomalies. The impact of BIPs was clearly affected by the game mode, whereas recovery appears to be independent of game mode. The results obtained using the LMM did not differ significantly from those obtained using the general regression model; however, it was shown that treatment effects could be improved by consideration of random effects in the regression model.

A General Mixed Linear Model with Left-Censored Data

  • Ha, Il-Do
    • Communications for Statistical Applications and Methods
    • /
    • 제15권6호
    • /
    • pp.969-976
    • /
    • 2008
  • Mixed linear models have been widely used in various correlated data including multivariate survival data. In this paper we extend hierarchical-likelihood(h-likelihood) approach for mixed linear models with right censored data to that for left censored data. We also allow a general random-effect structure and propose the estimation procedure. The proposed method is illustrated using a numerical data set and is also compared with marginal likelihood method.

집락자료의 분할표에서 독립성검정 (Testing Independence in Contingency Tables with Clustered Data)

  • 정광모;이현영
    • 응용통계연구
    • /
    • 제17권2호
    • /
    • pp.337-346
    • /
    • 2004
  • 랜덤표본에 관한 이원분할표의 독립성검정에는 통상 피어슨의 카이제곱적합도검정과 우도비검정을 사용한다. 그러나 랜덤표본이 아닌 집락자료에 관한 분할표의 경우에는 이들 검정법은 잘못된 결과를 나타낸다. 이러한 경우에는 공변량의 고정효과 외에 집락에 따른 변량효과를 함께 포함하는 일반화선형혼합모형을 고려함으로써 집락간의 이질성과 집락내의 종속성을 반영할 수 있다. 본 연구에서는 집락자료의 분할표에 대한 일반화선형혼합모형을 소개하고 실례를 통하여 이들 모형의 적합에 대해 논의한다.

Sire Evaluation of Count Traits with a Poisson-Gamma Hierarchical Generalized Linear Model

  • Lee, C.;Lee, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제11권6호
    • /
    • pp.642-647
    • /
    • 1998
  • A Poisson error model as a generalized linear mixed model (GLMM) has been suggested for genetic analysis of counted observations. One of the assumptions in this model is the normality for random effects. Since this assumption is not always appropriate, a more flexible model is needed. For count traits, a Poisson hierarchical generalized linear model (HGLM) that does not require the normality for random effects was proposed. In this paper, a Poisson-Gamma HGLM was examined along with corresponding analytical methods. While a difficulty arises with Poisson GLMM in making inferences to the expected values of observations, it can be avoided with the Poisson-Gamma HGLM. A numerical example with simulated embryo yield data is presented.