• Title/Summary/Keyword: linear maps

Search Result 209, Processing Time 0.03 seconds

NEAR REAL-TIME IONOSPHERIC MODELING USING A RBGIONAL GPS NETWORK (지역적 GPS 관측망을 이용한 준실시간 전리층 모델링)

  • Choi, Byung-Kyu;Park, Jong-Uk;Chung, Jeong-Kyun;Park, Phil-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.3
    • /
    • pp.283-292
    • /
    • 2005
  • Ionosphere is deeply coupled to the space environment and introduces the perturbations to radio signal because of its electromagnetic characteristics. Therefore, the status of ionosphere can be estimated by analyzing the GPS signal errors which are penetrating the ionosphere and it can be the key to understand the global circulation and change in the upper atmosphere, and the characteristics of space weather. We used 9 GPS Continuously Operating Reference Stations (CORS), which have been operated by Korea Astronomy and Space Science Institute (KASI) , to determine the high precision of Total Electron Content (TEC) and the pseudorange data which is phase-leveled by a linear combination with carrier phase to reduce the inherent noise. We developed the method to model a regional ionosphere with grid form and its results over South Korea with $0.25^{\circ}\;by\;0.25^{\circ}$ spatial resolution. To improve the precision of ionosphere's TEC value, we applied IDW (Inverse Distance Weight) and Kalman Filtering method. The regional ionospheric model developed by this research was compared with GIMs (Global Ionosphere Maps) preduced by Ionosphere Working Group for 8 days and the results show $3\~4$ TECU difference in RMS values.

A Study on Selection of Proposed Waste Facilities Sites using Geographic Information System (지리정보체계를 이용한 일반폐기물 매립후보지의 입지선정에 관한 연구)

  • Bae, Min-Ki;Chang, Byung-Moon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.1 no.2
    • /
    • pp.14-25
    • /
    • 1998
  • The purpose of this paper is to select proposed waste facilities sites after consideration of relative importance of siting factors. From the literature review we have established the siting factors affecting selecting waste facilities sites, and constructed hierarchy of siting factors to evaluate the relative importance of the factors using Analytical Hierarchy Process(AHP). After mail surveying of expert group, we have analyzed the relative importance of siting factors affecting waste facilities. We have constructed Geographic Information System(GIS) of raster type, based on seventeen theme maps of siting factors on waste facilities, to select the proposed waste facilities sites after consideration of the relative importance of the siting factors for Gyongsan city, in Korea. After applying linear combination method, and factor combination method to overcome the methodological limitations of land suitability analysis, we have found five proposed sites, where intersected with proposed sites obtained from the two methods. From this research we have found that 1) methodologically, using GIS for selection of proposed waste facilities sites turned out to be highly useful, 2) application of relative importance of siting factors and two methods of land suitability analysis in selection of proposed waste facilities sites are pertinent enough to provide valid and reliable results, and 3) the research methods and approach employed in this research will be highly useful in site selection of other major facilities.

  • PDF

Development of Korean Tissue Probability Map from 3D Magnetic Resonance Images (3차원 MR 영상으로부터의 한국인 뇌조직확률지도 개발)

  • Jung Hyun, Kim;Jong-Min, Lee;Uicheul, Yoon;Hyun-Pil, Kim;Bang Bon, Koo;In Young, Kim;Dong Soo, Lee;Jun Soo, Kwon;Sun I., Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.323-328
    • /
    • 2004
  • The development of group-specific tissue probability maps (TPM) provides a priori knowledge for better result of cerebral tissue classification with regard to the inter-ethnic differences of inter-subject variability. We present sequential procedures of group-specific TPM and evaluate the age effects in the structural differences of TPM. We investigated 100 healthy volunteers with high resolution MRI scalming. The subjects were classified into young (60, 25.92+4.58) and old groups (40, 58.83${\pm}$8.10) according to the age. To avoid any bias from random selected single subject and improve registration robustness, average atlas as target for TPM was constructed from skull-stripped whole data using linear and nonlinear registration of AIR. Each subject was segmented into binary images of gray matter, white matter, and cerebrospinal fluid using fuzzy clustering and normalized into the space of average atlas. The probability images were the means of these binary images, and contained values in the range of zero to one. A TPM of a given tissue is a spatial probability distribution representing a certain subject population. In the spatial distribution of tissue probability according to the threshold of probability, the old group exhibited enlarged ventricles and overall GM atrophy as age-specific changes, compared to the young group. Our results are generally consistent with the few published studies on age differences in the brain morphology. The more similar the morphology of the subject is to the average of the population represented by the TPM, the better the entire classification procedure should work. Therefore, we suggest that group-specific TPM should be used as a priori information for the cerebral tissue classification.

Online Signature Verification by Visualization of Dynamic Characteristics using New Pattern Transform Technique (동적 특성의 시각화를 수행하는 새로운 패턴변환 기법에 의한 온라인 서명인식 기술)

  • Chi Suyoung;Lee Jaeyeon;Oh Weongeun;Kim Changhun
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.7
    • /
    • pp.663-673
    • /
    • 2005
  • An analysis model for the dynamics information of two-dimensional time-series patterns is described. In the proposed model, two novel transforms that visualize the dynamic characteristics are proposed. The first transform, referred to as speed equalization, reproduces a time-series pattern assuming a constant linear velocity to effectively model the temporal characteristics of the signing process. The second transform, referred to as velocity transform, maps the signal onto a horizontal vs. vertical velocity plane where the variation oi the velocities over time is represented as a visible shape. With the transforms, the dynamic characteristics in the original signing process are reflected in the shape of the transformed patterns. An analysis in the context of these shapes then naturally results in an effective analysis of the dynamic characteristics. The proposed transform technique is applied to an online signature verification problem for evaluation. Experimenting on a large signature database, the performance evaluated in EER(Equal Error Rate) was improved to 1.17$\%$ compared to 1.93$\%$ of the traditional signature verification algorithm in which no transformed patterns are utilized. In the case of skilled forgery experiments, the improvement was more outstanding; it was demonstrated that the parameter set extracted from the transformed patterns was more discriminative in rejecting forgeries

Geostatistical Integration of Ground Survey Data and Secondary Data for Geological Thematic Mapping (지질 주제도 작성을 위한 지표 조사 자료와 부가 자료의 지구통계학적 통합)

  • Park, No-Wook;Jang, Dong-Ho;Chi, Kwang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.581-593
    • /
    • 2006
  • Various geological thematic maps have been generated by interpolating sparsely sampled ground survey data and geostatistical kriging that can consider spatial correlation between neighboring data has widely been used. This paper applies multi-variate geostatistical algorithms to integrate secondary information with sparsely sampled ground survey data for geological thematic mapping. Simple kriging with local means and kriging with an external drift are applied among several multi-variate geostatistical algorithms. Two case studies for spatial mapping of groundwater level and grain size have been carried out to illustrate the effectiveness of multi-variate geostatistical algorithms. A digital elevation model and IKONOS remote sensing imagery were used as secondary information in two case studies. Two multi-variate geostatistical algorithms, which can account for both spatial correlation of neighboring data and secondary data, showed smaller prediction errors and more local variations than those of ordinary kriging and linear regression. The benefit of applying the multi-variate geostatistical algorithms, however, depends on sampling density, magnitudes of correlation between primary and secondary data, and spatial correlation of primary data. As a result, the experiment for spatial mapping of grain size in which the effects of those factors were dominant showed that the effect of using the secondary data was relatively small than the experiment for spatial mapping of groundwater level.

Comparison of using CBCT with CT Simulator for Radiation dose of Treatment Planning (CBCT와 Simulation CT를 이용한 치료계획의 선량비교)

  • Kim, Dae-Young;Choi, Ji-Won;Cho, Jung-Keun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.742-749
    • /
    • 2009
  • The use of cone-beam computed tomography(CBCT) has been proposed for guiding the delivery of radiation therapy. A kilovoltage imaging system capable of radiography, fluoroscopy, and cone-beam computed tomography(CT) has been integrated with a medical linear accelerator. A standard clinical linear accelerator, operating in arc therapy mode, and an amorphous-silicon (a-Si) with an on-board electronic portal imager can be used to treat palliative patient and verify the patient's position prior to treatment. On-board CBCT images are used to generate patient geometric models to assist patient setup. The image data can also, potentially, be used for dose reconstruction in combination with the fluence maps from treatment plan. In this study, the accuracy of Hounsfield Units of CBCT images as well as the accuracy of dose calculations based on CBCT images of a phantom and compared the results with those of using CT simulator images. Phantom and patient studies were carried out to evaluate the achievable accuracy in using CBCT and CT stimulator for dose calculation. Relative electron density as a function of HU was obtained for both planning CT stimulator and CBCT using a Catphan-600 (The Phantom Laboratory, USA) calibration phantom. A clinical treatment planning system was employed for CT stimulator and CBCT based dose calculations and subsequent comparisons. The dosimetric consequence as the result of HU variation in CBCT was evaluated by comparing MU/cCy. The differences were about 2.7% (3-4MU/100cGy) in phantom and 2.5% (1-3MU/100cGy) in patients. The difference in HU values in Catphan was small. However, the magnitude of scatter and artifacts in CBCT images are affected by limitation of detector's FOV and patient's involuntary motions. CBCT images included scatters and artifacts due to In addition to guide the patient setup process, CBCT data acquired prior to the treatment be used to recalculate or verify the treatment plan based on the patient anatomy of the treatment area. And the CBCT has potential to become a very useful tool for on-line ART.)

Comparison of using CBCT with CT simulator for radiation dose of treatment planning (CBCT와 Simulation CT를 이용한 치료계획의 선량비교)

  • Cho, jung-keun;Kim, dae-young;Han, tae-jong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.1159-1166
    • /
    • 2009
  • The use of cone-beam computed tomography(CBCT) has been proposed for guiding the delivery of radiation therapy. A kilovoltage imaging system capable of radiography, fluoroscopy, and cone-beam computed tomography(CT) has been integrated with a medical linear accelerator. A standard clinical linear accelerator, operating in arc therapy mode, and an amorphous-silicon (a-Si) with an on-board electronic portal imager can be used to treat palliative patient and verify the patient's position prior to treatment. On-board CBCT images are used to generate patient geometric models to assist patient setup. The image data can also, potentially, be used for dose reconstruction in combination with the fluence maps from treatment plan. In this study, the accuracy of Hounsfield Units of CBCT images as well as the accuracy of dose calculations based on CBCT images of a phantom and compared the results with those of using CT simulator images. Phantom and patient studies were carried out to evaluate the achievable accuracy in using CBCT and CT stimulator for dose calculation. Relative electron density as a function of HU was obtained for both planning CT stimulator and CBCT using a Catphan-600 (The Phantom Laboratory, USA) calibration phantom. A clinical treatment planning system was employed for CT stimulator and CBCT based dose calculations and subsequent comparisons. The dosimetric consequence as the result of HU variation in CBCT was evaluated by comparing MU/cCy. The differences were about 2.7% (3-4MU/100cGy) in phantom and 2.5% (1-3MU/100cGy) in patients. The difference in HU values in Catphan was small. However, the magnitude of scatter and artifacts in CBCT images are affected by limitation of detector's FOV and patient's involuntary motions. CBCT images included scatters and artifacts due to In addition to guide the patient setup process, CBCT data acquired prior to the treatment be used to recalculate or verify the treatment plan based on the patient anatomy of the treatment area. And the CBCT has potential to become a very useful tool for on-line ART.)

  • PDF

Estimation of $T_2{^*}$ Relaxation Times for the Glandular Tissue and Fat of Breast at 3T MRI System (3테슬러 자기공명영상기기에서 유방의 유선조직과 지방조직의 $T_2{^*}$이완시간 측정)

  • Ryu, Jung Kyu;Oh, Jang-Hoon;Kim, Hyug-Gi;Rhee, Sun Jung;Seo, Mirinae;Jahng, Geon-Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Purpose : $T_2{^*}$ relaxation time which includes susceptibility information represents unique feature of tissue. The objective of this study was to investigate $T_2{^*}$ relaxation times of the normal glandular tissue and fat of breast using a 3T MRI system. Materials and Methods: Seven-echo MR Images were acquired from 52 female subjects (age $49{\pm}12 $years; range, 25 to 75) using a three-dimensional (3D) gradient-echo sequence. Echo times were between 2.28 ms to 25.72 ms in 3.91 ms steps. Voxel-based $T_2{^*}$ relaxation times and $R_2{^*}$ relaxation rate maps were calculated by using the linear curve fitting for each subject. The 3D regions-of-interest (ROI) of the normal glandular tissue and fat were drawn on the longest echo-time image to obtain $T_2{^*}$ and $R_2{^*}$ values. Mean values of those parameters were calculated over all subjects. Results: The 3D ROI sizes were $4818{\pm}4679$ voxels and $1455{\pm}785$ voxels for the normal glandular tissue and fat, respectively. The mean $T_2{^*}$ values were $22.40{\pm}5.61ms$ and $36.36{\pm}8.77ms$ for normal glandular tissue and fat, respectively. The mean $R_2{^*}$ values were $0.0524{\pm}0.0134/ms$ and $0.0297{\pm}0.0069/ms$ for the normal glandular tissue and fat, respectively. Conclusion: $T_2{^*}$ and $R_2{^*}$ values were measured from human breast tissues. $T_2{^*}$ of the normal glandular tissue was shorter than that of fat. Measurement of $T_2{^*}$ relaxation time could be important to understand susceptibility effects in the breast cancer and the normal tissue.

Modeling of Vegetation Phenology Using MODIS and ASOS Data (MODIS와 ASOS 자료를 이용한 식물계절 모델링)

  • Kim, Geunah;Youn, Youjeong;Kang, Jonggu;Choi, Soyeon;Park, Ganghyun;Chun, Junghwa;Jang, Keunchang;Won, Myoungsoo;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.627-646
    • /
    • 2022
  • Recently, the seriousness of climate change-related problems caused by global warming is growing, and the average temperature is also rising. As a result, it is affecting the environment in which various temperature-sensitive creatures and creatures live, and changes in the ecosystem are also being detected. Seasons are one of the important factors influencing the types, distribution, and growth characteristics of creatures living in the area. Among the most popular and easily recognized plant seasonal phenomena among the indicators of the climate change impact evaluation, the blooming day of flower and the peak day of autumn leaves were modeled. The types of plants used in the modeling were forsythia and cherry trees, which can be seen as representative plants of spring, and maple and ginkgo, which can be seen as representative plants of autumn. Weather data used to perform modeling were temperature, precipitation, and solar radiation observed through the ASOS Observatory of the Korea Meteorological Administration. As satellite data, MODIS NDVI was used for modeling, and it has a correlation coefficient of about -0.2 for the flowering date and 0.3 for the autumn leaves peak date. As the model used, the model was established using multiple regression models, which are linear models, and Random Forest, which are nonlinear models. In addition, the predicted values estimated by each model were expressed as isopleth maps using spatial interpolation techniques to express the trend of plant seasonal changes from 2003 to 2020. It is believed that using NDVI with high spatio-temporal resolution in the future will increase the accuracy of plant phenology modeling.