• Title/Summary/Keyword: linear functions

Search Result 1,588, Processing Time 0.027 seconds

A use of fuzzy set in linear programming problems (선형문제에서의 퍼지집합 이용)

  • 전용진
    • Korean Management Science Review
    • /
    • v.10 no.2
    • /
    • pp.1-9
    • /
    • 1993
  • This paper shows the application of fuzzy set and nonlinear membership function to linear programming problems in a fuzzy environment. In contrast to typical linear programming problems, the objectives and constraints of the problem in a fuzzy environment are defined imprecisely. This paper describes that fuzzy linear programming models can be formulated using the basic concepts of membership functions and fuzzy sets, and that they can be solved by quadratic programming methods. In a numerical example, a linear programming problem with two constraints and two decision variables is provided to illustrate the solution procedure.

  • PDF

GROWTH OF SOLUTIONS OF LINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS WITH COEFFICIENTS HAVING THE SAME LOGARITHMIC ORDER

  • Biswas, Nityagopal
    • Korean Journal of Mathematics
    • /
    • v.29 no.3
    • /
    • pp.473-481
    • /
    • 2021
  • In this paper, we investigate the relations between the growth of meromorphic coefficients and that of meromorphic solutions of complex linear differential-difference equations with meromorphic coefficients of finite logarithmic order. Our results can be viewed as the generalization for both the cases of complex linear differential equations and complex linear difference equations.

Exploration of the Composite Properties of Linear Functions from Instrumental Genesis of CAS and Mathematical Knowledge Discovery (CAS의 도구발생과 수학 지식의 발견 관점에서 고찰한 일차함수의 합성 성질 탐구)

  • Kim, Jin-Hwan;Cho, Cheong-Soo
    • Communications of Mathematical Education
    • /
    • v.24 no.3
    • /
    • pp.611-626
    • /
    • 2010
  • The purpose of this study is to explore the composite properties of linear functions using CAS calculators. The meaning and processes in which technological tools such as CAS calculators generated to instrument are reviewed. Other theoretical topic is the design of an exploring model of observing-conjecturing-reasoning and proving using CAS on experimental mathematics. Based on these background, the researchers analyzed the properties of the family of composite functions of linear functions. From analysis, instrumental capacity of CAS such as graphing, table generation and symbolic manipulation is a meaningful tool for this exploration. The result of this study identified that CAS as a mediator of mathematical activity takes part of major role of changing new ways of teaching and learning school mathematics.

Estimable functions of less than full rank linear model (불완전계수의 선형모형에서 추정가능함수)

  • Choi, Jaesung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.2
    • /
    • pp.333-339
    • /
    • 2013
  • This paper discusses a method for getting a basis set of estimable functions of less than full rank linear model. Since model parameters are not estimable estimable functions should be identified for making inferences proper about them. So, it suggests a method of using full rank factorization of model matrix to find estimable functions in easy way. Although they might be obtained in many different ways of using model matrix, the suggested full rank factorization technique could be one of much easier methods. It also discusses how to use projection matrix to identify estimable functions.

AN APPLICATION OF FRACTIONAL DERIVATIVE OPERATOR TO A NEW CLASS OF ANALYTIC AND MULTIVALENT FUNCTIONS

  • Lee, S.K.;Joshi, S.B.
    • Korean Journal of Mathematics
    • /
    • v.6 no.2
    • /
    • pp.183-194
    • /
    • 1998
  • Making use of a certain operator of fractional derivative, a new subclass $L_p({\alpha},{\beta},{\gamma},{\lambda})$) of analytic and p-valent functions is introduced in the present paper. Apart from various coefficient bounds, many interesting and useful properties of this class of functions are given, some of these properties involve, for example, linear combinations and modified Hadamard product of several functions belonging to the class introduced here.

  • PDF

A CERTAIN SUBCLASS OF MEROMORPHIC FUNCTIONS WITH POSITIVE COEFFICIENTS ASSOCIATED WITH AN INTEGRAL OPERATOR

  • Akgul, Arzu
    • Honam Mathematical Journal
    • /
    • v.39 no.3
    • /
    • pp.331-347
    • /
    • 2017
  • The aim of the present paper is to introduce a new subclass of meromorphic functions with positive coefficients defined by a certain integral operator and a necessary and sufficient condition for a function f to be in this class. We obtain coefficient inequality, meromorphically radii of close-to-convexity, starlikeness and convexity, convex linear combinations, Hadamard product and integral transformation for the functions f in this class.

INCLUSION AND NEIGHBORHOOD PROPERTIES OF CERTAIN SUBCLASSES OF p-VALENT ANALYTIC FUNCTIONS OF COMPLEX ORDER INVOLVING A LINEAR OPERATOR

  • Sahoo, Ashok Kumar;Patel, Jagannath
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.6
    • /
    • pp.1625-1647
    • /
    • 2014
  • By making use of the familiar concept of neighborhoods of analytic functions, we prove several inclusion relationships associated with the (n, ${\delta}$)-neighborhoods of certain subclasses of p-valent analytic functions of complex order with missing coefficients, which are introduced here by means of the Saitoh operator. Special cases of some of the results obtained here are shown to yield known results.

CERTAIN CLASSES OF ANALYTIC FUNCTIONS AND DISTRIBUTIONS WITH GENERAL EXPONENTIAL GROWTH

  • Sohn, Byung Keun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.6
    • /
    • pp.1805-1827
    • /
    • 2014
  • Let $\mathcal{K}^{\prime}_M$ be the generalized tempered distributions of $e^{M(t)}$-growth, where the function M(t) grows faster than any linear functions as ${\mid}t{\mid}{\rightarrow}{\infty}$, and let $K^{\prime}_M$ be the Fourier transform spaces of $\mathcal{K}^{\prime}_M$. We obtain the relationship between certain classes of analytic functions in tubes, $\mathcal{K}^{\prime}_M$ and $K^{\prime}_M$.

SYMMETRIC TOEPLITZ DETERMINANTS ASSOCIATED WITH A LINEAR COMBINATION OF SOME GEOMETRIC EXPRESSIONS

  • Ahuja, Om P.;Khatter, Kanika;Ravichandran, V.
    • Honam Mathematical Journal
    • /
    • v.43 no.3
    • /
    • pp.465-481
    • /
    • 2021
  • Let f be the function defined on the open unit disk, with f(0) = 0 = f'(0) - 1, satisfying Re (αf'(z) + (1 - α)zf'(z)/f(z)) > 0 or Re (αf'(z) + (1 - α)(1 + zf"(z)/f'(z)) > 0 respectively, where 0 ≤ α ≤ 1. Estimates for the Toeplitz determinants have been obtained when the elements are the coefficients of the functions belonging to these two subclasses.

SUBORDINATION RESULTS FOR CERTAIN CLASSES OF MULTIVALENTLY ANALYTIC FUNCTIONS WITH A CONVOLUTION STRUCTURE

  • Prajapat, J.K.;Raina, R.K.
    • East Asian mathematical journal
    • /
    • v.25 no.2
    • /
    • pp.127-140
    • /
    • 2009
  • In this paper a general class of analytic functions involving a convolution structure is introduced. Among the results investigated are the various results depicting useful properties and characteristics of this function class by employing the techniques of differential subordination. Relevances of the main results with some known results are also mentioned briefly.