• Title/Summary/Keyword: linear filter model

Search Result 271, Processing Time 0.029 seconds

A Linear Reservoir Model with Kslman Filter in River Basin (Kalman Filter 이론에 의한 하천유역의 선형저수지 모델)

  • 이영화
    • Journal of Environmental Science International
    • /
    • v.3 no.4
    • /
    • pp.349-356
    • /
    • 1994
  • The purpose of this study is to develop a linear reservoir model with Kalman filter using Kalman filter theory which removes a physical uncertainty of :ainfall-runoff process. A linear reservoir model, which is the basic model of Kalman filter, is used to calculate runoff from rainfall in river basin. A linear reservoir model with Kalman filter is composed of a state-space model using a system model and a observation model. The state-vector of system model in linear. The average value of the ordinate of IUH for a linear reservoir model with Kalman filter is used as the initial value of state-vector. A .linear reservoir model with Kalman filter shows better results than those by linear reserevoir model, and decreases a physical uncertainty of rainfall-runoff process in river basin.

  • PDF

Model based optimal FIR synthesis filter for a nosy filter bank system

  • Lee, Hyun-Beom;Han, Soo-Hee;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.413-418
    • /
    • 2003
  • In this paper, a new multirate optimal finite impulse response (FIR) filter is proposed for the signal reconstruction in the nosy filter bank systems. The multirate optimal FIR filter replaces the conventional synthesis filters and the Kalman synthesis filter. First, the generic linear model is derived from the multirate state space model for an autoregressive (AR)input signal. Second, the multirate optimal FIR filter is derived from the multirate generic linear model using the minimum variance criterion. This paper also provides numerical examples and results. The simulation results illustrate that the performance is improved compared with conventional synthesis filters and the proposed filter has advantages over the Kalman synthesis filter.

  • PDF

Practical Design Issues in a Linear Feedback Control System with a Notch Filter (선형 피드백 제어계의 노치필터 설계에 대한 실제적 문제)

  • Jin, Lihua;Kim, Young-Chol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.176-183
    • /
    • 2010
  • This paper presents some practical design issues that should be carefully considered when a notch filter is included in a linear feedback controller. A notch filter is generally used to compensate the effects of resonant modes that may result in poor performance. It is very common that the practical engineers prefer to add such a notch filter after having previously designed a feedback controller without the filter. It is known that the resulting performance by this approach is not seriously different from when a feedback controller is designed for a plant previously compensated by a notch filter. However, we will point out that there are some cases where both approaches have different performances. In order to show this, a low-order controller design using the partial model matching method has been applied to a linear time invariant (L Tn model. The results suggest that there is a tendency to achieve much better time responses in terms of reducing the overshoot and shortening the settling time, and in the frequency domain characteristics such as the sensitivity function and the stability margins when the design of a feedback controller after including a notch filter is carried out.

A Nonlinear Information Filter for Tracking Maneuvering Vehicles in an Adaptive Cruise Control Environment

  • Kim, Yong-Shik;Hong, Keum-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1669-1674
    • /
    • 2004
  • In this paper, a nonlinear information filter (IF) for curvilinear motions in an interacting multiple model (IMM) algorithm to track a maneuvering vehicle on a road is investigated. Driving patterns of vehicles on a road are modeled as stochastic hybrid systems. In order to track the maneuvering vehicles, two kinematic models are derived: A constant velocity model for linear motions and a constant-speed turn model for curvilinear motions. For the constant-speed turn model, a nonlinear IF is used in place of the extended Kalman filter in nonlinear systems. The suggested algorithm reduces the root mean squares error for linear motions and rapidly detects possible turning motions.

  • PDF

Vocal Tract Modeling with Unfixed Sectionlength Acoustic Tubes(USLAT) (비고정 구간 길이 음향 튜브를 이용한 성도 모델링)

  • Kim, Dong-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1126-1130
    • /
    • 2010
  • Speech production can be viewed as a filtering operation in which a sound source excites a vocal tract filter. The vocal tract is modeled as a chain of cylinders of varying cross-sectional area in linear prediction acoustic tube modeling. In this modeling the most common implementation assumes equal length of tube sections. Therefore, to model complex vocal tract shapes, a large number of tube sections are needed. This paper proposes a new vocal tract model with unfixed sectionlengths, which uses the reduced lattice filter for modeling the vocal tract. This model transforms the lattice filter to reduced structure and the Burg algorithm to modified version. When the conventional and the proposed models are implemented with the same order of linear prediction analysis, the proposed model can produce more accurate results than the conventional one. To implement a system within similar accuracy level, it may be possible to reduce the stages of the lattice filter structure. The proposed model produces the more similar vocal tract shape than the conventional one.

The design T-S fuzzy model-based target tracking systems (T-S 퍼지모델 기반 표적추적 시스템)

  • Hoh Sun-Young;Joo Young-Hoon;Park Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.419-422
    • /
    • 2005
  • In this note, the Takagi-Sugeno (T-S) fuzzy-model-based state estimator using standard Kalman filter theory is investigated. In that case, the dynamic system model is represented the T-S fuzzy model with the fuzzy state estimation. The steady state solutions can be found for proposed modeling method and dynamic system for maneuvering targets can be approximated as locally linear system. And then, modeled filter is corrected by the fuzzy gain which is a fuzzy system using the relation between the filter residual and its variation. This paper studies the T-S fuzzy model-based state estimator which the dynamic system can be approximated as linear system.

  • PDF

An IMM Algorithm for Tracking Maneuvering Vehicles in an Adaptive Cruise Control Environment

  • Kim, Yong-Shik;Hong, Keum-Shik
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.3
    • /
    • pp.310-318
    • /
    • 2004
  • In this paper, an unscented Kalman filter (UKF) for curvilinear motions in an interacting multiple model (IMM) algorithm to track a maneuvering vehicle on a road is investigated. Driving patterns of vehicles on a road are modeled as stochastic hybrid systems. In order to track the maneuvering vehicles, two kinematic models are derived: A constant velocity model for linear motions and a constant-speed turn model for curvilinear motions. For the constant-speed turn model, an UKF is used because of the drawbacks of the extended Kalman filter in nonlinear systems. The suggested algorithm reduces the root mean squares error for linear motions and rapidly detects possible turning motions.

ROBUST $H_{\infty}$ FIR SAMPLED-DATA FILTERING

  • Ryu, Hee-Seob;Yoo, Kyung-Sang;Kwon, Oh-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.521-521
    • /
    • 2000
  • This paper investigates the problem of robust H$_{\infty}$ filter with FIR(Finite Impulse Response) structure for linear continuous time-varying systems with sampled-data measurements. It is assumed that the system is subject to real time-varying uncertainty which is represented by the state-space model having parameter uncertainty. The robust H$_{\infty}$ FIR filter is proposed for the continuous-time linear parameter uncertain systems. It is also derived from the equivalence relationship between the robust linear H$_{\infty}$ FIR filter and the robust linear H$_{\infty}$ filter with sampled-data measurements.

  • PDF

Quasi-Optimal DOA Estimation Scheme for Gimbaled Ultrasonic Moving Source Tracker (김발형 초음파 이동음원 추적센서 개발을 위한 의사최적 도래각 추정기법)

  • Han, Seul-Ki;Lee, Hye-Kyung;Ra, Won-Sang;Park, Jin-Bae;Lim, Jae-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.276-283
    • /
    • 2012
  • In this paper, a practical quasi-optimal DOA(direction of arrival) estimator is proposed in order to develop a one-axis gimbaled ultrasonic source tracker for mobile robot applications. With help of the gimbal structure, the ultrasonic moving source tracking problem can be simply reduced to the DOA estimation. The DOA estimation is known as one of the representative long-pending nonlinear filtering problems, but the conventional nonlinear filters might be restrictive in many actual situations because it cannot guarantee the reliable performance due to the use of nonlinear signal model. This motivates us to reformulate the DOA estimation problem in the linear robust state estimation setting. Based on the assumption that the received ultrasonic signals are noisy sinusoids satisfying linear prediction property, a linear uncertain measurement model is newly derived. To avoid the DOA estimation performance degradation caused by the stochastic parameter uncertainty contained in the linear measurement model, the recently developed NCRKF (non-conservative robust Kalman filter) scheme [1] is utilized. The proposed linear DOA estimator provides excellent DOA estimation performance and it is suitable for real-time implementation for its linear recursive filter structure. The effectiveness of the suggested DOA estimation scheme is demonstrated through simulations and experiments.

Federated Information Mode-Matched Filters in ACC Environment

  • Kim Yong-Shik;Hong Keum-Shik
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.173-182
    • /
    • 2005
  • In this paper, a target tracking algorithm for tracking maneuvering vehicles is presented. The overall algorithm belongs to the category of an interacting multiple-model (IMM) algorithm used to detect multiple targets using fused information from multiple sensors. First, two kinematic models are derived: a constant velocity model for linear motions, and a constant-speed turn model for curvilinear motions. Fpr the constant-speed turn model, a nonlinear information filter is used in place of the extended Kalman filter. Being equivalent to the Kalman filter (KF) algebraically, the information filter is extended to N-sensor distributed dynamic systems. The model-matched filter used in multi-sensor environments takes the form of a federated nonlinear information filter. In multi-sensor environments, the information-based filter is easier to decentralize, initialize, and fuse than a KF-based filter. In this paper, the structural features and information sharing principle of the federated information filter are discussed. The performance of the suggested algorithm using a Monte Carlo simulation under the two patterns is evaluated.