• Title/Summary/Keyword: linear expansion coefficient

Search Result 110, Processing Time 0.034 seconds

Prediction of Spring-in of Curved Laminated Composite Structure (굴곡 형상 복합재 구조물의 스프링-인 예측)

  • Oh, Jae-Min;Kim, Wie-Dae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • This paper predicts the spring-in effect of curved laminated composite structure for various stacking sequence using finite element analysis(ABAQUS). In composite manufacturing process, large temperature difference, different coefficient of thermal expansion and chemical shrinkage effect cause distortion of composite parts such as spring-in and warpage. Distortion of composite structure is important issue on quality of product, and it should be considered in manufacturing process. In finite element analysis, a CHILE(Cure Hardening Instantaneously Linear Elastic) model and chemical shrinkage effects are considered developing user subroutine in ABAQUS and some cases are simulated.

A novel and simple HSDT for thermal buckling response of functionally graded sandwich plates

  • Elmossouess, Bouchra;Kebdani, Said;Bouiadjra, Mohamed Bachir;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.62 no.4
    • /
    • pp.401-415
    • /
    • 2017
  • A new higher shear deformation theory (HSDT) is presented for the thermal buckling behavior of functionally graded (FG) sandwich plates. It uses only four unknowns, which is even less than the first shear deformation theory (FSDT) and the conventional HSDTs. The theory considers a hyperbolic variation of transverse shear stress, respects the traction free boundary conditions and contrary to the conventional HSDTs, the present one presents a new displacement field which includes undetermined integral terms. Material characteristics and thermal expansion coefficient of the sandwich plate faces are considered to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. The thermal loads are supposed as uniform, linear and non-linear temperature rises within the thickness direction. An energy based variational principle is used to derive the governing equations as an eigenvalue problem. The validation of the present work is carried out with the available results in the literature. Numerical results are presented to demonstrate the influences of variations of volume fraction index, length-thickness ratio, loading type and functionally graded layers thickness on nondimensional thermal buckling loads.

Stress Analysis of the Micro-structure Considering the Residual Stress (잔류응력을 고려한 미세구조물의 강도해석)

  • 심재준;한근조;안성찬;한동섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.820-823
    • /
    • 2002
  • MEMS structures Generally have been fabricated using surface-machining, but the interface failure between silicon substrate and evaporated thin film frequently takes place due to difference of linear coefficient of thermal expansion. Therefore this paper studied the effect of the residual stress caused by variable external loads. This study did not analyzed accurate quantity of the residual stress but trend for the effect of residual stress. Several specimens were fabricated using other material(Al, Au and Cu) and thermal load was applied. The residual stress was measured by nano-indentation using AFM. The results showed the existence of the residual stress due to thermal load. The indentation area of the thermal loaded thin film reduced about 3.5% comparing with the virgin thin film caused by residual stress. The finite element analysis results are similar to indentation test.

  • PDF

Thermal buckling analysis of functionally graded sandwich cylindrical shells

  • Daikh, Ahmed Amine
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.4
    • /
    • pp.335-351
    • /
    • 2020
  • Thermal buckling of functionally graded sandwich cylindrical shells is presented in this study. Material properties and thermal expansion coefficient of FGM layers are assumed to vary continuously through the thickness according to a sigmoid function and simple power-law distribution in terms of the volume fractions of the constituents. Equilibrium and stability equations of FGM sandwich cylindrical shells with simply supported boundary conditions are derived according to the Donnell theory. The influences of cylindrical shell geometry and the gradient index on the critical buckling temperature of several kinds of FGM sandwich cylindrical shells are investigated. The thermal loads are assumed to be uniform, linear and nonlinear distribution across the thickness direction. An exact simple form of nonlinear temperature rise through its thickness taking into account the thermal conductivity and the inhomogeneity parameter is presented.

Properties of As-casted High Nitrogen Steel for Core of Over-head Transmission Line (가공 송전선 강심용 고질소강 주조재의 제특성)

  • Yoo, Kyung-Jae;Kim, Bong-Seo;Kwon, Hae-Woong;Kim, Byung-Geol;Lee, Hee-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.861-863
    • /
    • 1998
  • As-casted high nitrogen alloys (Fe-25%Mn-12%Cr-1%Ni) have been investigated to study core material. Nitrogen concentration in molten alloys was increased with increasing the square root of nitrogen gas pressure in melting chamber. This result can be explained by Sievert's law. Nitrogen that dissolved as a interstital solid solution element in austenite stainless steel increased lattice parameter and hardness. Electric resistivity($\rho$) was increased with increasing nitrogen concentration and was about $80{\mu}{\Omega}cm$ at room temperature. Coefficient of linear thermal expansion of the nitrogen steel was about $22{\times}10^{-6}/^{\circ}C$.

  • PDF

Transmission coefficients of a floating rectangular breakwater with porous side plates

  • Cho, Il-Hyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.1
    • /
    • pp.53-65
    • /
    • 2016
  • The interaction between incident waves and a floating rectangular breakwater with the vertical porous side plates has been investigated in the context of the two-dimensional linear potential theory. The matched eigenfunction expansion method(MEEM) for multiple domains is applied to obtain the analytic solutions. The dependence of the transmitted coefficients and motion responses on the design parameters, such as porosity and protruding depth of side plates, is systematically analyzed. It is found that the non-dimensional wavelength where the sudden drop of transmission coefficients occurs, corresponds to the heave resonant frequency obtained from Ruol et al. (2013) for $\pi$-type floating breakwater. It is concluded that both properly selected porosity and deeper protruding depth of side plates are helpful in reducing the transmission coefficients and also extending the wider applicable extent of incident wavelength for performance enhancement.

The mechanical characteristics of 345kV XLPE cable (345kV XLPE 2000$mm^2$ 케이블의 기계적특성 고찰)

  • Nam, S.H.;Baek, J.H.;Heo, H.D.;Lee, S.H.;Kim, C.M.;Lee, S.K.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1688-1690
    • /
    • 2001
  • The mechanical characteristics of XLPE cable is basic to the installation design. Especially, snake and offset design require accurate coefficient of linear expansion($\alpha$), Young's modulus(E) and bending stiffness(El) of the cable. In this paper, $\alpha$, E and El of 345kV XLPE cable was measured by experimental setup, and verified by measuring axial tension and lateral displacement in snake installation.

  • PDF

Evaluation of Internally Cured Concrete Pavement Using Environmental Responses and Critical Stress Analysis

  • Kim, Kukjoo;Chun, Sanghyun
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.4
    • /
    • pp.463-473
    • /
    • 2015
  • Three full-scale instrumented test slabs were constructed and tested using a heavy vehicle simulator (HVS) to evaluate the structural behavior of internally cured concrete (ICC) for use in pavements under Florida condition. Three mix designs selected from a previous laboratory testing program include the standard mixture with 0.40 water-cement ratio, the ICC with 0.32 water-cement ratio, and the ICC mixture with 0.40 water-cement ratio. Concrete samples were prepared and laboratory tests were performed to measure strength, elastic modulus, coefficient of thermal expansion and shrinkage properties. The environmental responses were measured using strain gages, thermocouples, and linear variable differential transformers instrumented in full-scale concrete slabs. A 3-D finite element model was developed and calibrated using strain data measured from the full-scale tests using the HVS. The results indicate that the ICC slabs were less susceptible to the change of environmental conditions and appear to have better potential performance based on the critical stress analysis.

Evaluation of the Residual Stress on the Multi-layer Thin Film made of Different Materials (이종재료를 사용한 다층 박막에서의 잔류응력 평가)

  • 심재준;한근조;김태형;안성찬;한동섭;이성욱
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.9
    • /
    • pp.135-141
    • /
    • 2003
  • MEMS structures generally have been fabricated using surface-machining method, but the interface failure between silicon substrate and evaporated thin film frequently takes place due to the residual stress inducing by the applied the various loads. And the very important physical property in the heated environment is the linear coefficient of thermal expansion. Therefore this paper studied the residual stress caused the thermal loads in the thin film and introduced the simple method to measure the trend of the residual stress by the indentation. Specimens were made of materials such as Al, Au and Cu and thermal load was applied repeatedly. The residual stress was measured by nano-indentation using AFM and FEA. The existence of the residual stress due to thermal load was verified by the experimental results. The indentation length of the thermal loaded specimens increased minimum 11.8% comparing with the virgin thin film caused by tensile residual stress. The finite element analysis results are similar to indentation test.

Deformation Behavior of MEMS Gyroscope Package Subjected to Temparature Change (온도변화에 따른 MEMS 자이로스코프 패키지의 변형측정)

  • Joo, Jin-Won;Choi, Yong-Seo;Choa, Sung-Hoon;Song, C.M.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1407-1412
    • /
    • 2003
  • In MEMS devices, packaging induced stress or stress induced structure deformation become increasing concerns since it directly affects the performance of the device. In this paper, deformation behavior of MEMS gyroscope package subjected to temparature change is investigated using high-sensitivity $Moir{\acute{e}}$ interferometry. Using the real-time $Moir{\acute{e}}$ setup, fringe patterns are recorded and analyzed at several temperatures. Temperature dependent analyses of warpages and extensions/contractions of the package are presented. Linear elastic behavior is documented in the temperature region of room temperature to $125^{\circ}C$. Analysis of the package reveals that global bending occurs due to the mismatch of thermal expansion coefficient between the chip, the molding compond and the PCB.

  • PDF