• Title/Summary/Keyword: linear encoder

Search Result 114, Processing Time 0.022 seconds

Label Embedding for Improving Classification Accuracy UsingAutoEncoderwithSkip-Connections (다중 레이블 분류의 정확도 향상을 위한 스킵 연결 오토인코더 기반 레이블 임베딩 방법론)

  • Kim, Museong;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.175-197
    • /
    • 2021
  • Recently, with the development of deep learning technology, research on unstructured data analysis is being actively conducted, and it is showing remarkable results in various fields such as classification, summary, and generation. Among various text analysis fields, text classification is the most widely used technology in academia and industry. Text classification includes binary class classification with one label among two classes, multi-class classification with one label among several classes, and multi-label classification with multiple labels among several classes. In particular, multi-label classification requires a different training method from binary class classification and multi-class classification because of the characteristic of having multiple labels. In addition, since the number of labels to be predicted increases as the number of labels and classes increases, there is a limitation in that performance improvement is difficult due to an increase in prediction difficulty. To overcome these limitations, (i) compressing the initially given high-dimensional label space into a low-dimensional latent label space, (ii) after performing training to predict the compressed label, (iii) restoring the predicted label to the high-dimensional original label space, research on label embedding is being actively conducted. Typical label embedding techniques include Principal Label Space Transformation (PLST), Multi-Label Classification via Boolean Matrix Decomposition (MLC-BMaD), and Bayesian Multi-Label Compressed Sensing (BML-CS). However, since these techniques consider only the linear relationship between labels or compress the labels by random transformation, it is difficult to understand the non-linear relationship between labels, so there is a limitation in that it is not possible to create a latent label space sufficiently containing the information of the original label. Recently, there have been increasing attempts to improve performance by applying deep learning technology to label embedding. Label embedding using an autoencoder, a deep learning model that is effective for data compression and restoration, is representative. However, the traditional autoencoder-based label embedding has a limitation in that a large amount of information loss occurs when compressing a high-dimensional label space having a myriad of classes into a low-dimensional latent label space. This can be found in the gradient loss problem that occurs in the backpropagation process of learning. To solve this problem, skip connection was devised, and by adding the input of the layer to the output to prevent gradient loss during backpropagation, efficient learning is possible even when the layer is deep. Skip connection is mainly used for image feature extraction in convolutional neural networks, but studies using skip connection in autoencoder or label embedding process are still lacking. Therefore, in this study, we propose an autoencoder-based label embedding methodology in which skip connections are added to each of the encoder and decoder to form a low-dimensional latent label space that reflects the information of the high-dimensional label space well. In addition, the proposed methodology was applied to actual paper keywords to derive the high-dimensional keyword label space and the low-dimensional latent label space. Using this, we conducted an experiment to predict the compressed keyword vector existing in the latent label space from the paper abstract and to evaluate the multi-label classification by restoring the predicted keyword vector back to the original label space. As a result, the accuracy, precision, recall, and F1 score used as performance indicators showed far superior performance in multi-label classification based on the proposed methodology compared to traditional multi-label classification methods. This can be seen that the low-dimensional latent label space derived through the proposed methodology well reflected the information of the high-dimensional label space, which ultimately led to the improvement of the performance of the multi-label classification itself. In addition, the utility of the proposed methodology was identified by comparing the performance of the proposed methodology according to the domain characteristics and the number of dimensions of the latent label space.

Kalman Filter-based Sensor Fusion for Posture Stabilization of a Mobile Robot (모바일 로봇 자세 안정화를 위한 칼만 필터 기반 센서 퓨전)

  • Jang, Taeho;Kim, Youngshik;Kyoung, Minyoung;Yi, Hyunbean;Hwan, Yoondong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.8
    • /
    • pp.703-710
    • /
    • 2016
  • In robotics research, accurate estimation of current robot position is important to achieve motion control of a robot. In this research, we focus on a sensor fusion method to provide improved position estimation for a wheeled mobile robot, considering two different sensor measurements. In this case, we fuse camera-based vision and encode-based odometry data using Kalman filter techniques to improve the position estimation of the robot. An external camera-based vision system provides global position coordinates (x, y) for the mobile robot in an indoor environment. An internal encoder-based odometry provides linear and angular velocities of the robot. We then use the position data estimated by the Kalman filter as inputs to the motion controller, which significantly improves performance of the motion controller. Finally, we experimentally verify the performance of the proposed sensor fused position estimation and motion controller using an actual mobile robot system. In our experiments, we also compare the Kalman filter-based sensor fused estimation with two different single sensor-based estimations (vision-based and odometry-based).

A Study on Pose Control for Inverted Pendulum System using PID Algorithm (PID 알고리즘을 이용한 역 진자 시스템의 자세 제어에 관한 연구)

  • Jin-Gu Kang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.400-405
    • /
    • 2023
  • Currently, inverted pendulums are being studied in many fields, including posture control of missiles, rockets, etc, and bipedal robots. In this study, the vertical posture control of the pendulum was studied by constructing a rotary inverted pendulum using a 256-pulse rotary encoder and a DC motor. In the case of nonlinear systems, complex algorithms and controllers are required, but a control method using the classic and relatively simple PID(Proportional Integral Derivation) algorithm was applied to the rotating inverted pendulum system, and a simple but desired method was studied. The rotating inverted pendulum system used in this study is a nonlinear and unstable system, and a PID controller using Microchip's dsPIC30F4013 embedded processor was designed and implemented in linear modeling. Usually, PID controllers are designed by combining one or two or more types, and have the advantage of having a simple structure compared to excellent control performance and that control gain adjustment is relatively easy compared to other controllers. In this study, the physical structure of the system was analyzed using mathematical methods and control for vertical balance of a rotating inverted pendulum was realized through modeling. In addition, the feasibility of controlling with a PID controller using a rotating inverted pendulum was verified through simulation and experiment.

Dual Codec Based Joint Bit Rate Control Scheme for Terrestrial Stereoscopic 3DTV Broadcast (지상파 스테레오스코픽 3DTV 방송을 위한 이종 부호화기 기반 합동 비트율 제어 연구)

  • Chang, Yong-Jun;Kim, Mun-Churl
    • Journal of Broadcast Engineering
    • /
    • v.16 no.2
    • /
    • pp.216-225
    • /
    • 2011
  • Following the proliferation of three-dimensional video contents and displays, many terrestrial broadcasting companies have been preparing for stereoscopic 3DTV service. In terrestrial stereoscopic broadcast, it is a difficult task to code and transmit two video sequences while sustaining as high quality as 2DTV broadcast due to the limited bandwidth defined by the existing digital TV standards such as ATSC. Thus, a terrestrial 3DTV broadcasting with a heterogeneous video codec system, where the left image and right images are based on MPEG-2 and H.264/AVC, respectively, is considered in order to achieve both high quality broadcasting service and compatibility for the existing 2DTV viewers. Without significant change in the current terrestrial broadcasting systems, we propose a joint rate control scheme for stereoscopic 3DTV service based on the heterogeneous dual codec systems. The proposed joint rate control scheme applies to the MPEG-2 encoder a quadratic rate-quantization model which is adopted in the H.264/AVC. Then the controller is designed for the sum of the left and right bitstreams to meet the bandwidth requirement of broadcasting standards while the sum of image distortions is minimized by adjusting quantization parameter obtained from the proposed optimization scheme. Besides, we consider a condition on maintaining quality difference between the left and right images around a desired level in the optimization in order to mitigate negative effects on human visual system. Experimental results demonstrate that the proposed bit rate control scheme outperforms the rate control method where each video coding standard uses its own bit rate control algorithm independently in terms of the increase in PSNR by 2.02%, the decrease in the average absolute quality difference by 77.6% and the reduction in the variance of the quality difference by 74.38%.