• 제목/요약/키워드: linear elasticity

검색결과 253건 처리시간 0.022초

선형 탄성 문제의 경계적분식 해와 변분해의 동등성 증명 (Proof of equivalence of solutions of boundary integral and variational equations of the linear elasticity problem)

  • 유영면;박찬우;권길헌
    • 대한기계학회논문집
    • /
    • 제11권6호
    • /
    • pp.1001-1004
    • /
    • 1987
  • 본 연구에서는 우선 선형 탄성문제의 변분해(variational solution)가 Sobol- ev 공간[ $H^{1}$(.OMEGA.)]= $H^{1}$(.OMEGA.)* $H^{1}$(.OMEGA.)* $H^{1}$(.OMEGA.)에서 유일하게 존재함을 재 검토하고 다음으로 경계적분식의 해도 변분해와 같음을 보인다. 이것은 선형 탄 성문제의 경우 고전해(classical solution)가 존재하지 않을 경우에도 BEM을 사용하여 변분해의 수치적 근사치를 구할 수 있다는 수학적 근거가 된다. 이를 위해서 Sobol- ev 공간 내에서의 Green's formula를 적용하는데 점하중해의 특이점(singularity)때문 에 Green's formula를 적용하기가 곤란해진다. 이 문제는 적분영역 .OMEGA.를 .OMEGA.-B$_{\rho }$로 치환하고 .rho.를 0으로 접근시키는 방법으로 해결한다. 이 때 B$_{\rho}$는 특이 점에 중심을 두고 매우 작은 변경 .rho.를 갖는 구이다.ho.를 갖는 구이다.

최소 제곱 무요소법을 이용한 선형 탄성 변형 해석 (The Least-Squares Meshfree Method for Linear Elasticity)

  • 권기찬;박상훈;윤성기
    • 대한기계학회논문집A
    • /
    • 제26권11호
    • /
    • pp.2312-2321
    • /
    • 2002
  • The first-order least-squares meshfree method for linear elasticity is presented. The conventional and the compatibility-imposed least-squares formulations are studied on the convergence behavior of the solution and the robustness to integration error. Since the least-squares formulation is a type of mixed formulation and induces positive-definite system matrix, by using shape functions of same order for both primal and dual variables, higher rate of convergence is obtained for dual variables than Galerkin formulation. Numerical examples also show that the presented formulations do not exhibit any volumetric locking for the incompressible materials.

Analyzing nonlinear vibrations of metal foam nanobeams with symmetric and non-symmetric porosities

  • Alasadi, Abbas A.;Ahmed, Ridha A.;Faleh, Nadhim M.
    • Advances in aircraft and spacecraft science
    • /
    • 제6권4호
    • /
    • pp.273-282
    • /
    • 2019
  • This article is concerned with the investigation of geometrically non-linear vibration response of refined thick porous nanobeams. To this end, non-local theory of elasticity has been adopted to provide the nanobeam formulation. Voids or pores can affect the material characteristics of the nanobeam. So, their effects have been considered in this research and also there are various void distributions. The closed form solution of the non-linear problem has been used that is adopted from previous articles. Then, it is focused on the impacts of non-local field, void distribution, void amount and geometrical properties on non-linear vibrational characteristic of a nano-size beam.

Forced vibration of nanorods using nonlocal elasticity

  • Aydogdu, Metin;Arda, Mustafa
    • Advances in nano research
    • /
    • 제4권4호
    • /
    • pp.265-279
    • /
    • 2016
  • Present study interests with the longitudinal forced vibration of nanorods. The nonlocal elasticity theory of Eringen is used in modeling of nanorods. Uniform, linear and sinusoidal axial loads are considered. Dynamic displacements are obtained for nanorods with different geometrical properties, boundary conditions and nonlocal parameters. The nonlocal effect increases dynamic displacement and frequency when compared with local elasticity theory. Present results can be useful for modeling of the axial nanomotors and nanoelectromechanical systems.

확장 해밀턴 이론에 근거한 선형탄성시스템의 변분동적수치해석법 (A Variational Numerical Method of Linear Elasticity through the Extended Framework of Hamilton's Principle)

  • 김진규
    • 한국전산구조공학회논문집
    • /
    • 제27권1호
    • /
    • pp.37-43
    • /
    • 2014
  • 동역학의 새로운 변분이론인 확장 해밀턴 이론은 수학물리학을 비롯한 공학에 있어 초기치-경계치 문제해석에 광범위하게 적용될수 있는 기반을 제공하는 것으로 본 논문에서는 이 이론을 기반으로 선형탄성 단자유도계에 적용한 새로운 수치해석법을 제안하였다. 곧, 변분이론의 특성을 감안해, 전체 time-step에 대한 수치해를 한번에 산정하는 해석법을 제안하였고, 주요 예제를 통해 이 해석법의 특성을 살펴보았다. 에너지 보존 시스템의 경우(비감쇠 시스템에 외력이 작용치 않는 경우), time-step에 관계없이 에너지와 모멘텀이 보존되는 symplecticity property를 가지고 있음을 확인할 수 있었고, 감쇠 시스템인 경우, time-step이 점점 작아질수록 정확한 해에 빠르게 수렴하는 것을 확인하였다.

Longitudinal cracks in non-linear elastic beams exhibiting material inhomogeneity

  • Rizov, Victor I.
    • Structural Engineering and Mechanics
    • /
    • 제71권2호
    • /
    • pp.153-163
    • /
    • 2019
  • Longitudinal fracture behavior of non-linear elastic beam configurations is studied in terms of the strain energy release rate. It is assumed that the beams exhibit continuous material inhomogeneity along the width as well as along the height of the crosssection. The Ramberg-Osgood stress-strain relation is used for describing the non-linear mechanical behavior of the inhomogeneous material. A solution to strain energy release rate is derived that holds for inhomogeneous beams of arbitrary cross-section under combination of axial force and bending moments. Besides, the solution may be applied at any law of continuous distribution of the modulus of elasticity in the beam cross-section. The longitudinal crack may be located arbitrary along the beam height. The solution is used to investigate a longitudinal crack in a beam configuration of rectangular cross-section under four-point bending. The crack is located symmetrically with respect to the beam mid-span. It is assumed that the modulus of elasticity varies continuously according a cosine law in the beam cross-section. The longitudinal fracture behavior of the inhomogeneous beam is studied also by applying the J-integral approach for verification of the non-linear solution to the strain energy release rate derived in the present paper. Effects of material inhomogeneity, crack location along the beam height and non-linear mechanical behavior of the material on the longitudinal fracture behavior are evaluated. Thus, the solution derived in the present paper can be used in engineering design of inhomogeneous non-linear elastic structural members to assess the influence of various material and geometrical parameters on longitudinal fracture.

수치해석을 이용한 흙막이벽체의 사보강버팀보에 적용하는 축강성에 대한 현장 적용성 연구 (A Study on the Field Application to Axial Stiffness Applying Corner Strut of Retainingwall Using Numerical Analysis)

  • 이영진;이성규;이강일
    • 한국지반신소재학회논문집
    • /
    • 제21권2호
    • /
    • pp.39-48
    • /
    • 2022
  • 사보강버팀보는 수평버팀보와 달리 토압이 발생할 경우 설치각에 의한 휨거동이 발생하기 때문에 버팀보의 축강성만이 요구되는 탄소성해석으로는 그 적용에 대한 한계가 존재한다. 따라서, 본 연구에서는 탄소성해석시의 사보강버팀보에 대한 해석방안을 제시하기 위하여 축강성데이터를 수정하는 방안으로의 접근을 시도하였으며, 이를 위하여 선형탄성해석을 이용하였다. 그리고, 선형탄성해석을 통하여 실제현장에 설치된 사보강버팀보에 대한 축강성데이터를 산정하였다. 산정한 사보강버팀보의 축강성데이터는 탄소성해석에 적용하여 흙막이벽체의 거동을 확인하였으며, 이를 계측결과 및 유한요소해석결과와 비교하여 그 적용성을 평가하였다. 연구 결과 선형탄성해석을 이용하여 사보강버팀보의 축강성데이터를 적용한 경우(Case 1, Case 3)는 버팀보의 축강성을 적용하는 일반적인 방법(Case 2, Case 4)에 비하여 축강성데이터는 9~17% 수준으로 감소하였으며, 탄소성 해석시의 흙막이벽체의 변위는 25.33%~64.42%로 증가하였다. 이 결과를 계측결과와 비교한바 선형탄성해석을 활용한 경우(Case 1, Case 3)는 탄소성해석시의 흙막이벽체 거동을 더욱 잘 나타내었다.

Effect of chain structure of polypropylenes on the melt flow behavior

  • Lee, Young-Jun;Sohn, Ho-Sang;Park, Seung-Ho
    • Korea-Australia Rheology Journal
    • /
    • 제12권3_4호
    • /
    • pp.181-186
    • /
    • 2000
  • Rheological Properties of polypropylenes having different molecular structures (linear polypropylene (PPL) and branched one (PPB)) were studied. Both the extensional flow and oscillatory shear flow properties were checked. Especially, the melt strength of polypropylenes having various shear history were investigated by using in-house-made Rheometer (called SMER). Compared to linear polypropylene, the branched polypropylene shows enhanced melt strength during extensional flow due to the retarded relaxation of molecules. When the slope of melt tension was plotted against take up speed of melt strand, the characteristic peak was observed in case of branched polypropylene, while the linear polypropylene shows only monotonously decreasing pattern. This entanglement was partially disrupted by physical forces such as shear during melt extrusion. However, the melt strength of PPB after multiple extrusion is still higher than PPL, implying the loss of elasticity during multiple extrusion is not so comprehensive. On dynamic experiments, PPB shows typical shear thinning behavior and the tangent delta of PPB is lower than PPL, reflecting high elasticity of PPB.

  • PDF

과도 선형 동탄성 문제의 시간영역 유한요소해석 (A Time-Domain Finite Element Formulation for Transient Dynamic Linear Elasticity)

  • 심우진;이성희
    • 대한기계학회논문집A
    • /
    • 제25권4호
    • /
    • pp.574-581
    • /
    • 2001
  • Transient linear elastodynamic problems are numerically analyzed in a time-domain by the Finite Element Method, for which the variational formulation based upon the equations of motion in convolution integral is newly derived. This formulation is implicit and does not include the time derivative terms so that the computation procedure is simple and less assumptions are required comparing to the conventional time-domain dynamic numerical algorithms, being able to get the improved numerical accuracy and stability. That formulation is expanded using the semi-discrete approximation to obtain the finite element equations. In the temporal approximation, the time axis is divided equally and constant and linear time variations are assumed in those intervals. It is found that unconditionally stable numerical results are obtained in case of the constant time variation. Some numerical examples are given to show the versatility of the presented formulation.

An Econometric Analysis of Imported Softwood Log Markets in South Korea - on the Basis of the Lagged Dependent Variable -

  • Park, Yong Bae;Youn, Yeo-Chang
    • 한국산림과학회지
    • /
    • 제98권2호
    • /
    • pp.148-155
    • /
    • 2009
  • The objective of this study is to know market structures of softwood logs being imported to South Korea from log producing countries. Import demand of softwood logs imported to South Korea from America, New Zealand and Chile is fixed as a function of log prices, the lagged dependent variable and output. On the basis of the adaptive expectations model, linear regression models that the explanatory variables included and the lagged dependent variable were estimated by Seemingly Unrelated Regression Equations (SURE). The short-run and long-run own price elasticity of America's softwood log import demand is -1.738 and -4.250 respectively. Then long-run elasticity is much higher than short-run elasticity. Short-run and long-run crosselasticity of New Zealand's softwood log import demand with respect to American's softwood log import price are inelastic at 0.505 and 0.883 respectively. Short-run and long-run cross-elasticity of Chile's softwood log import demands with respect to American's softwood log import prices were highly elastic at 2.442 and 4.462 respectively. Long-run elasticity was almost twice as high as short-run elasticity.