• 제목/요약/키워드: linear drift

검색결과 193건 처리시간 0.031초

철근콘크리트 연성 모멘트골조에 대한 반응수정계수와 비선형 변위량의 평가 (Estimation of Response Modification Factor and Nonlinear Displacement for Moment Resisting Reinforced Concrete Frames)

  • 김길환;전대한;이상호
    • 한국지진공학회논문집
    • /
    • 제6권2호
    • /
    • pp.29-37
    • /
    • 2002
  • 본 연구는 철근콘크리트 연성 모멘트골조의 선형.비선형 정적해석을 통한 반응수정계수와 비선형 변위량을 평가하여 합리적인 내진설계의 기초자료를 제공하는 것을 목적으로 한다. 먼저 국내 내진설계 규준에 따라 각 모델을 설계한 후, 철근콘크리트 연성 모멘트골조의 반응수정계수와 비선형 변위량을 평가하였으며, 해석에 사용된 모델은 층수(10, 20, 30), 평면비(1:1, 1:2), 해석방법(2D, 3D)을 변수로 한 27개의 모델이다. 반응수정계수와 비선형 변위량의 평가는 각 모델별 선형.비선형 정적해석을 수행하여 그 결과를 비교 분석하여 산정하였다. 반응수정계수는 강도계수, 연성계수, 잉여도계수, 감쇠계수의 곱으로 산정하였고, 그 결과 해석방향의 저항골조의 수에 따라 2 스팬인 경우 3.5, 3 스팬인 경우 4.3, 4 스팬 이상인 경우에는 평면비나 층수와 상관없이 5.0에 근접한 결과를 나타내었다. 비선형 변위량은 층간변위각비(비선형 변위각/선형 변위각)에 의해 평가되었으며, 층간변위각비는 5.85에서 9.34로 나타났다.

Prediction of the turning and zig-zag maneuvering performance of a surface combatant with URANS

  • Duman, Suleyman;Bal, Sakir
    • Ocean Systems Engineering
    • /
    • 제7권4호
    • /
    • pp.435-460
    • /
    • 2017
  • The main objective of this study is to investigate the turning and zig-zag maneuvering performance of the well-known naval surface combatant DTMB (David Taylor Model Basin) 5415 hull with URANS (Unsteady Reynolds-averaged Navier-Stokes) method. Numerical simulations of static drift tests have been performed by a commercial RANS solver based on a finite volume method (FVM) in an unsteady manner. The fluid flow is considered as 3-D, incompressible and fully turbulent. Hydrodynamic analyses have been carried out for a fixed Froude number 0.28. During the analyses, the free surface effects have been taken into account using VOF (Volume of Fluid) method and the hull is considered as fixed. First, the code has been validated with the available experimental data in literature. After validation, static drift, static rudder and drift and rudder tests have been simulated. The forces and moments acting on the hull have been computed with URANS approach. Numerical results have been applied to determine the hydrodynamic maneuvering coefficients, such as, velocity terms and rudder terms. The acceleration, angular velocity and cross-coupled terms have been taken from the available experimental data. A computer program has been developed to apply a fast maneuvering simulation technique. Abkowitz's non-linear mathematical model has been used to calculate the forces and moment acting on the hull during the maneuvering motion. Euler method on the other hand has been applied to solve the simultaneous differential equations. Turning and zig-zag maneuvering simulations have been carried out and the maneuvering characteristics have been determined and the numerical simulation results have been compared with the available data in literature. In addition, viscous effects have been investigated using Eulerian approach for several static drift cases.

Seismic response of current RC buildings in Kathmandu Valley

  • Chaulagain, Hemchandra;Rodrigues, Hugo;Spacone, Enrico;Varum, Humberto
    • Structural Engineering and Mechanics
    • /
    • 제53권4호
    • /
    • pp.791-818
    • /
    • 2015
  • RC buildings constitute the prevailing type of construction in earthquake-prone region like Kathmandu Valley. Most of these building constructions were based on conventional methods. In this context, the present paper studied the seismic behaviour of existing RC buildings in Kathmandu Valley. For this, four representative building structures with different design and construction, namely a building: (a) representing the non-engineered construction (RC1 and RC2) and (b) engineered construction (RC3 and RC4) has been selected for analysis. The dynamic properties of the case study building models are analyzed and the corresponding interaction with seismic action is studied by means of non-linear analyses. The structural response measures such as capacity curve, inter-storey drift and the effect of geometric non-linearities are evaluated for the two orthogonal directions. The effect of plan and vertical irregularity on the performance of the structures was studied by comparing the results of two engineered buildings. This was achieved through non-linear dynamic analysis with a synthetic earthquake subjected to X, Y and $45^{\circ}$ loading directions. The nature of the capacity curve represents the strong impact of the P-delta effect, leading to a reduction of the global lateral stiffness and reducing the strength of the structure. The non-engineered structures experience inter-storey drift demands higher than the engineered building models. Moreover, these buildings have very low lateral resistant, lesser the stiffness and limited ductility. Finally, a seismic safety assessment is performed based on the proposed drift limits. Result indicates that most of the existing buildings in Nepal exhibit inadequate seismic performance.

Changes in the Hydrodynamic Characteristics of Ships During Port Maneuvers

  • Mai, Thi Loan;Vo, Anh Khoa;Jeon, Myungjun;Yoon, Hyeon Kyu
    • 한국해양공학회지
    • /
    • 제36권3호
    • /
    • pp.143-152
    • /
    • 2022
  • To reach a port, a ship must pass through a shallow water zone where seabed effects alter the hydrodynamics acting on the ship. This study examined the maneuvering characteristics of an autonomous surface ship at 3-DOF (Degree of freedom) motion in deep water and shallow water based on the in-port speed of 1.54 m/s. The CFD (Computational fluid dynamics) method was used as a specialized tool in naval hydrodynamics based on the RANS (Reynolds-averaged Navier-Stoke) solver for maneuvering prediction. A virtual captive model test in CFD with various constrained motions, such as static drift, circular motion, and combined circular motion with drift, was performed to determine the hydrodynamic forces and moments of the ship. In addition, a model test was performed in a square tank for a static drift test in deep water to verify the accuracy of the CFD method by comparing the hydrodynamic forces and moments. The results showed changes in hydrodynamic forces and moments in deep and shallow water, with the latter increasing dramatically in very shallow water. The velocity fields demonstrated an increasing change in velocity as water became shallower. The least-squares method was applied to obtain the hydrodynamic coefficients by distinguishing a linear and non-linear model of the hydrodynamic force models. The course stability, maneuverability, and collision avoidance ability were evaluated from the estimated hydrodynamic coefficients. The hydrodynamic characteristics showed that the course stability improved in extremely shallow water. The maneuverability was satisfied with IMO (2002) except for extremely shallow water, and collision avoidance ability was a good performance in deep and shallow water.

선형 계수율계에 관한 연구 (A Study on the Linear Counting Ratemeter)

  • 이병선
    • 대한전자공학회논문지
    • /
    • 제8권6호
    • /
    • pp.8-16
    • /
    • 1971
  • 본 논문은 원자로 또는 방사성 동위요소등에서 방사되는 방사선의 계수률을 선형적으로 미터로 지시할 수 있는 동시에 기록계로도 기록할 수 있는 완전 트랜지스터화된 선형 계수률계의 개발에 관한 연구이다. 이 계수률계는 양호한 안정을 위하여 트랜지스터 Chopper를 사용하였다. 교류증폭기의 입력단에는 높은 입력저항을 주기 위하여 composite emitter follower buffer stage를 사용하였으며 hybrid parameter 등가회로를 구성하여 해석하였다. 계수률은 수 CPS로 부터 100KCPS까지 4개 영역으로 나누어서 선형적으로 계수할 수 있으며 분해능은 0.5μsec 미만이고 상온에서의 출력 drift는 7시간 계속동작시켰을시에 ±0.5μA 정도이다.

  • PDF

이차원(二次元) 부유식(浮游式) 파랑발전기(波浪發電器)의 유체역학적(流體力學的) 특성(特性) (Hydrodynamic Characteristics of Two-dimensional Wave-energy Absorbers)

  • 김무현;최항순
    • 대한조선학회지
    • /
    • 제20권1호
    • /
    • pp.47-58
    • /
    • 1983
  • A study is made, in the framework of linear potential theory, to investigate the hydrodynamic characteristics of two-dimensional wave-energy absorbers as like the Salter's duck and an oscillating cam with Lewis-form section, which undergo uncoupled heaving and rolling motions in an incident linear gravity wave in deep water. Wave energy is supposed to be extracted by a linearly damped generator with an spring. Some well-known formulae in ship hydrodynamics such as Haskind-Newman relation and Bessho-Newman relation are utilized in forms of Kochin functions to derived expressions for efficiency, breaking effect and drift force of the absorber. Maximum ideal efficiency of 100% can be arrived at an prescribed tuning frequency. Coupling effect is also examined to assess the detrimental effect of sway on efficiency. From numerical calculations for both types of two-dimensional devices it may be concluded that a wave-energy absorber functions at the same time as a wave breaker and that the drift force acting on the device becomes smaller when it absorbs wave energy than as it oscillates freely. Finally the study is extended to an infinite array system, equivalent to a body in a canal, to show that all incident wave energy can be absorbed regardless of the absorber's size, only if the optimum space and the optimum condition of control are realized.

  • PDF

Scenario-based seismic performance assessment of regular and irregular highway bridges under near-fault ground motions

  • Dolati, Abouzar;Taghikhany, Touraj;Khanmohammadi, Mohammad;Rahai, Alireza
    • Earthquakes and Structures
    • /
    • 제8권3호
    • /
    • pp.573-589
    • /
    • 2015
  • In order to investigate the seismic behavior of highway bridges under near-fault earthquakes, a parametric study was conducted for different regular and irregular bridges. To this end, an existing regular viaduct Highway Bridge was used as a reference model and five irregular samples were generated by varying span length and pier height. The seismic response of the six highway bridges was evaluated by three dimensional non-linear response history analysis using an ensemble of far-fault and scenario-based near-fault records. In this regard, drift ratio, input and dissipated energy as well as damage index of bridges were compared under far- and near-fault motions. The results indicate that the drift ratio under near-fault motions, on the average, is 100% and 30% more than far-fault motions at DBE and MCE levels, respectively. The energy and damage index results demonstrate a dissipation of lower energy in piers and a significant increase of collapse risk, especially for irregular highway bridges, under near-fault ground motions.

정지 세장선의 파랑 중 선형 및 비선형 유체력 계산 : 무한 수심의 경우 (Computation of the Linear and Nonlinear Hydrodynamic Forces on Slender Ships with Zero Speed in Waves : Infinite-Depth Case)

  • 김용환
    • 대한조선학회논문집
    • /
    • 제37권2호
    • /
    • pp.1-13
    • /
    • 2000
  • 본 논문에서는 무한수심의 해양에서 파랑 중의 세장선에 작용하는 선형 및 비선형 동유체력의 계산을 위해 unified 이론을 적용하고자 한다. 세장선은 전진속도를 가지지 않는 것으로 가정하였으며, 이러한 가정은 FPSO, shuttle tanker 등과 같은 선박에 적용된다. Unified 이론을 적용하기 위해 우선 스트립 이론의 결과를 필요로 하며, 이를 위해 NIIRID를 이용하였다. 선형이론을 적용하여 선박의 동유력체 계수 및 운동응답특성들을 살펴보았으며, 이들 결과를 이용하여 2차 비선형 동유체력을 구하였다. Unified 이론은 2차원 결과를 단순히 합한 스트립 이론에 3차원 수정항을 더하기 때문에, 선형이론의 경우 heave 및 pitch 운동에 대해 3차원 panel 프로그램들과 비슷한 정확도를 기대할 수 있다. 특히 본 연구에서는 이러한 선형이론을 2차 동유체력의 계산으로 확장하였으며, 이러한 확장이 합리적인 결과를 주고 있음을 확인할 수 있었다.

  • PDF

Mitigation of seismic drift response of braced frames using short yielding-core BRBs

  • Pandikkadavath, Muhamed Safeer;Sahoo, Dipti Ranjan
    • Steel and Composite Structures
    • /
    • 제23권3호
    • /
    • pp.285-302
    • /
    • 2017
  • Buckling-restrained braced frames (BRBFs) are commonly used as the lateral force-resisting systems in building structures in the seismic regions. The nearly-symmetric hysteretic response and the delayed brace core fracture of buckling-restrained braces (BRBs) under the axial cyclic loading provide the adequate lateral force and deformation capacity to BRBFs under the earthquake excitation. However, the smaller axial stiffness of BRBs result in the undesirable higher residual drift response of BRBFs in the post-earthquake scenario. Two alternative approaches are investigated in this study to improve the elastic axial stiffness of BRBs, namely, (i) by shortening the yielding cores of BRBs; and (ii) by reducing the BRB assemblies and adding the elastic brace segments in series. In order to obtain the limiting yielding core lengths of BRBs, a modified approach based on Coffin-Manson relationship and the higher mode compression buckling criteria has been proposed in this study. Both non-linear static and dynamic analyses are carried out to analytically evaluate the seismic response of BRBFs fitted with short-core BRBs of two medium-rise building frames. Analysis results showed that the proposed brace systems are effective in reducing the inter-story and residual drift response of braced frames without any significant change in the story shear and the displacement ductility demands.

Experimental tests and global modeling of masonry infilled frames

  • Bergami, Alessandro Vittorio;Nuti, Camillo
    • Earthquakes and Structures
    • /
    • 제9권2호
    • /
    • pp.281-303
    • /
    • 2015
  • The effects of infill panels on the response of r.c. frames subjected to seismic action are widely recognized. Numerous experimental investigations were effected and several analytical models were developed on this subject. This work, which is part of a larger project dealing with specific materials and structures commonly used in Italy, discusses experimental tests on masonry and samples of bare and infilled portals. The experimental activity includes tests on elemental materials, and 12 wall samples. Finally, three one-bay one-story reinforced concrete frames, designed according to the outdated Italian technical code D.M. 1996 without seismic details, were tested (bare and infilled) under constant vertical and cyclic lateral load. The first cracks observed on the framed walls occurred at a drift of about 0.3%, reaching its maximum capacity at a drift of 0.5% while retaining its capacity up to a drift of 0.6%. Infill contributed to both the stiffness and strength of the bare reinforced concrete frame at small drifts thus improving overall system behavior. In addition to the experimental activities, previously mentioned, the recalibration of a model proposed by Comberscue (1996) was evaluated. The accuracy of an OpenSees non linear fiber based model of the prototype tested, including a strut element was verified through a comparison with the final experimental results. This work has been partially supported by research grant DPC-ReLUIS 2014.