• Title/Summary/Keyword: linear differential equations

Search Result 539, Processing Time 0.026 seconds

Vibration Analysis of an Axially Moving Membrane with In-Plane/out-of-Plane Deformations (면내/면외변형을 고려한 이송되는 박막의 진동해석)

  • 신창호;정진태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.164-168
    • /
    • 2004
  • The vibration analysis of an axially moving membrane are investigated when the membrane has the two sets of in-plane boundary conditions, which are free and fixed constraints in the lateral direction. Since the in-plane stiffness is much higher than the out-of-plane stiffness, it is assumed during deriving the equations of motion that the in-plane motion is in a steady state. Under this assumption. the equation of out-of\ulcornerplane motion is derived, which is a linear partial differential equation influenced by the in-plane stress distributions. After discretizing the equation by using the Galerkin method, the natural frequencies and mode shapes are computed. In particular, we put a focus on analyzing the effects of the in-plane boundary conditions on the natural frequencies and mode shapes of the moving membrane.

  • PDF

Dynamic Analysis of a Cantilever Beam with the Parametric Exitation in Rotation (회전 방향으로 매개 가진하는 외팔보의 동적 해석)

  • 임형빈;정진태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.335-340
    • /
    • 2001
  • Dynamic stability of a rotary oscillating cantilever beam is presented in this study. Using the stretch deformation instead of the conventional axial deformation, three linear partial differential equations are derived from Hamilton's principle and transformed into dimensionless forms. Stability diagrams of the first order approximate solutions are obtained by using the multiple scale perturbation method. The stability diagrams show that relatively large unstable regions exist near the combination of the first chordwise bending natural frequency and the first stretch natural frequency. This result is verified by using the generalized-${\alpha}$ method.

  • PDF

Free Vibrations of Tapered Circular Arches with Constant Volume (일정체적 변단면 원호형 아치의 자유진동)

  • Lee, Byoung-Koo;Lee, Tae-Eun;Yoon, Hee-Min;Choi, Jong-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.2
    • /
    • pp.144-152
    • /
    • 2010
  • This paper deals with free vibrations of the tapered circular arches with constant volume, whose cross sectional shape is the solid regular polygon. Volumes of the objective arches are always held constant regardless shape functions of the cross-sectional depth. The shape functions are chosen as the linear, parabolic and sinusoidal ones. Ordinary differential equations governing free vibrations of such arches are derived and solved numerically for determining the natural frequencies. In the numerical examples, hinged-hinged, hinged-clamped and clamped-clamped end constraints are considered. As the numerical results, the relationships between non-dimensional frequency parameters and various arch parameters such as rise ratio, section ratio, side number, volume ratio and taper type are reported in tables and figures.

Free Vibrations of Circular Curved Beams with Constant Volume (일정체적 원호형 곡선보의 자유진동)

  • Lee, Byoung-Koo;Lee, Tae-Eun;Choi, Jong-Min;Park, Chang-Eun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.6
    • /
    • pp.570-579
    • /
    • 2011
  • This paper deals with free vibrations of the circular curved beams with constant volume, whose cross sectional shapes are the circular solid cross-sections. Volumes of the objective beam are always held in constant regardless shape functions of the cross-sectional radius. The shape functions are chosen as the linear, parabolic and sinusoidal ones. Ordinary differential equations governing free vibrations of such beam are derived and solved numerically for determining the natural frequencies. In numerical examples, the hinged-hinged, hinged-clamped and clamped-clamped end constraints are considered. As the numerical results, relationships between frequency parameters and various beam parameters such as rise ratio, section ratio, elasticity ratio, volume ratio, slenderness ratio and taper type are reported in tables and figures.

STUDY ON THE DEFORMATION OF DROPLETS IN A TWO-DIMENSIONAL CHANNEL FLOW (2차원 채널유동에서의 액적 변형에 대한 수치해석적 연구)

  • Jung, S.R.;Cho, M.H.;Choi, H.G.;Yoo, J.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.6-9
    • /
    • 2011
  • In this study, the two-phase incompressible flow in two-dimensional channel considering the effect of surface tension is simulated using an improved level-set method. Quadratic element is used for solving the continuity and Navier-Stokes equations to avoid using an additional pressure equation, and Crank-Nicholson scheme and linear element are used for solving the advection equation of the level set function. Direct approach method using geometric information is implemented instead of the hyperbolic-type partial differential equation for the reinitializing the level set function. The benchmark test case considers various arrays of defomable droplets under different flow conditions in straight channel. The deformation and migration of the droplets are computed and the results are compared very well with the existing studies.

  • PDF

ABSOLUTELY STABLE EXPLICIT SCHEMES FOR REACTION SYSTEMS

  • Lee, Chang-Ock;Leem, Chae-Hun;Park, Eun-Hee;Youm, Jae-Boum
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.1
    • /
    • pp.165-187
    • /
    • 2010
  • We introduce two numerical schemes for solving a system of ordinary differential equations which characterizes several kinds of linear reactions and diffusion from biochemistry, physiology, etc. The methods consist of sequential applications of the simple exact solver for a reversible reaction. We prove absolute stability and convergence of the proposed explicit methods. One is of first order and the other is of second order. Numerical results are included.

A Transient Modeling of Temperature Variation in a Melting Furnace of a Pyrolysis Melting Incinerator (열분해 용융소각로 내 용융로에서의 온도변화에 대한 과정론적 모델링)

  • Kim, Bong-Keun;Yang, Won;Yu, Tae-U
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.167-171
    • /
    • 2006
  • The previous models for thermal behavior in the melting furnace were deterministic, composed of such a form that if the initial input conditions are determined, the results would have been come out by using the basic heat equilibrium equations. But making the experiment by trusting the analysis results, the melted slag is fortuitously set often, because temperature variation of the melted slag in the reaction process is not point function but path function. So in this study, a transient model was developed and verified by comparing with the experimental results.

  • PDF

A Mathematical Model for Pyrolysis Processes During Unforced Smoldering of Cigarette (비흡입시 연소하는 담배의 열분해 작용에 관한 수학적 모델)

  • 이성철
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.17 no.2
    • /
    • pp.160-169
    • /
    • 1995
  • A mathematical model for the pyrolysis processes during unforced smoldering of cigarette was proposed in this study by analyzing the physical model of the smoldering cigarette (including the establishment of burning front between burning zone and pyrolysis zone, and analyzing the involvement of main factors such as pyrolysis of virgin tobacco, evaporation of water, and internal heat transport in the processes). Thermal conduction of cigarette paper and convective and radiative heat transfer at the outer surface were also considered via the thermal resistance law for the competitive heat transfer mechanisms. The governing partial differential equations were solved using an integral method. Model predictions of smoldering speed, or linear burn rate, as well as temperature and density profiles in the pyrolysis zone for different kinds of cigarettes were found to be close to the experimental data in the literature (Muramatsu, 1981). The model provides a relatively fast and efficient way to simulate the pyrolysis processes and offers a practical tool for exploring important parameters for a smoldering cigarette, such as blended tobacco composition, properties of cigarette paper, and heat flux from the burning zone to the pyrolysis zone.

  • PDF

Flow Characteristics and Transverse Bed Slope in Curved Alluvial Channels (만곡 수로의 횡방향 하상경사와 흐름특성)

  • 차영기;이대철
    • Water for future
    • /
    • v.24 no.1
    • /
    • pp.99-107
    • /
    • 1991
  • This study is for simulating to the model which analyzes flow characteristics and transverse bed slopes in a coarse-streambed of the meandering alluvial channels. Using the equations for conservation of mass, momentum, and for lateral stability of the streambed, a linear differential equation of transverse bed slope is derived from the flow characteristics in curved channels. Its solutions are solved by the Sine-generated curve method(SCM) and compared with results of field measurements. Lag distances by the maximum transverse bed slope and velocity profiles will predict risk sections of concave bank under floods.

  • PDF

Flutter Control of a Lifting Surface via Visco-Hysteretic Vibration Absorbers

  • Lacarbonara, Walter;Cetraro, Marek
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.4
    • /
    • pp.331-345
    • /
    • 2011
  • In this paper, a visco-hysteretic vibration absorber (VA) is proposed to increase the flutter speed of an airfoil and enhance damping in the pre- and post-flutter regimes. The passive system consists of a parallel arrangement of a dashpot and a rateindependent hysteretic element, represented by the Bouc-Wen differential model. The equations of motion are obtained and various tools of linear and nonlinear dynamics are employed to study the effects of the visco-hysteretic VA in the pre- and postflutter ranges.