• 제목/요약/키워드: linear differential equations

검색결과 540건 처리시간 0.022초

GROWTH AND FIXED POINTS OF MEROMORPHIC SOLUTIONS OF HIGHER-ORDER LINEAR DIFFERENTIAL EQUATIONS

  • Xu, Jun-Feng;Yi, Hong-Xun
    • 대한수학회지
    • /
    • 제46권4호
    • /
    • pp.747-758
    • /
    • 2009
  • In this paper, we investigate the growth and fixed points of meromorphic solutions of higher order linear differential equations with meromorphic coefficients and their derivatives. Because of the restriction of differential equations, we obtain that the properties of fixed points of meromorphic solutions of higher order linear differential equations with meromorphic coefficients and their derivatives are more interesting than that of general transcendental meromorphic functions. Our results extend the previous results due to M. Frei, M. Ozawa, G. Gundersen, and J. K. Langley and Z. Chen and K. Shon.

GENERALIZATION OF A FIRST ORDER NON-LINEAR COMPLEX ELLIPTIC SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS IN SOBOLEV SPACE

  • MAMOURIAN, A.;TAGHIZADEH, N.
    • 호남수학학술지
    • /
    • 제24권1호
    • /
    • pp.67-73
    • /
    • 2002
  • In this paper we discuss on the existence of general solution of Partial Differential Equations $\frac{{\partial}w}{{\partial}\bar{z}}=F(z,\;w,\;\frac{{\partial}w}{{\partial}z})+G(z,\;w,\;\bar{w})$ in the Sololev Space $W_{1,p}(D)$, that is generalization of a first order Non-linear Elliptic System of Partial Differential Equations $\frac{{\partial}w}{{\partial}\bar{z}}=F(z,\;w,\;\frac{{\partial}w}{{\partial}z}).$

  • PDF

GROWTH OF SOLUTIONS OF NON-HOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS AND ITS APPLICATIONS

  • Pramanik, Dilip Chandra;Biswas, Manab
    • Korean Journal of Mathematics
    • /
    • 제29권1호
    • /
    • pp.65-73
    • /
    • 2021
  • In this paper, we investigate the growth properties of solutions of the non-homogeneous linear complex differential equation L(f) = b (z) f + c (z), where L(f) is a linear differential polynomial and b (z), c (z) are entire functions and give some of its applications on sharing value problems.

GROWTH OF SOLUTIONS TO LINEAR DIFFERENTIAL EQUATIONS WITH ENTIRE COEFFICIENTS OF [p, q]-ORDER IN THE COMPLEX PLANE

  • Biswas, Nityagopal;Tamang, Samten
    • 대한수학회논문집
    • /
    • 제33권4호
    • /
    • pp.1217-1227
    • /
    • 2018
  • In the paper, we study the growth and fixed point of solutions of high order linear differential equations with entire coefficients of [p, q]-order in the complex plane. We improve and extend some results due to T. B. Cao, J. F. Xu, Z. X. Chen, and J. Liu, J. Tu, L. Z. Shi.

Growth order of Meromorphic Solutions of Higher-order Linear Differential Equations

  • Xu, Junfeng;Zhang, Zhanliang
    • Kyungpook Mathematical Journal
    • /
    • 제48권1호
    • /
    • pp.123-132
    • /
    • 2008
  • In this paper, we investigate higher-order linear differential equations with entire coefficients of iterated order. We improve and extend the result of L. Z. Yang by using the estimates for the logarithmic derivative of a transcendental meromorphic function due to Gundersen and the extended Wiman-Valiron theory by Wang and Yi. We also consider the nonhomogeneous linear differential equations.

ON GROWTH PROPERTIES OF TRANSCENDENTAL MEROMORPHIC SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS WITH ENTIRE COEFFICIENTS OF HIGHER ORDER

  • Biswas, Nityagopal;Datta, Sanjib Kumar;Tamang, Samten
    • 대한수학회논문집
    • /
    • 제34권4호
    • /
    • pp.1245-1259
    • /
    • 2019
  • In the paper, we study the growth properties of meromorphic solutions of higher order linear differential equations with entire coefficients of [p, q] - ${\varphi}$ order, ${\varphi}$ being a non-decreasing unbounded function and establish some new results which are improvement and extension of some previous results due to Hamani-Belaidi, He-Zheng-Hu and others.

TWO-SCALE CONVERGENCE FOR PARTIAL DIFFERENTIAL EQUATIONS WITH RANDOM COEFFICIENTS

  • Pak, Hee-Chul
    • 대한수학회논문집
    • /
    • 제18권3호
    • /
    • pp.559-568
    • /
    • 2003
  • We introduce the notion of two-scale convergence for partial differential equations with random coefficients that gives a very efficient way of finding homogenized differential equations with random coefficients. For an application, we find the homogenized matrices for linear second order elliptic equations with random coefficients. We suggest a natural way of finding the two-scale limit of second order equations by considering the flux term.

EXISTENCE OF POLYNOMIAL INTEGRATING FACTORS

  • Stallworth, Daniel T.;Roush, Fred W.
    • Kyungpook Mathematical Journal
    • /
    • 제28권2호
    • /
    • pp.185-196
    • /
    • 1988
  • We study existence of polynomial integrating factors and solutions F(x, y)=c of first order nonlinear differential equations. We characterize the homogeneous case, and give algorithms for finding existence of and a basis for polynomial solutions of linear difference and differential equations and rational solutions or linear differential equations with polynomial coefficients. We relate singularities to nature of the solution. Solution of differential equations in closed form to some degree might be called more an art than a science: The investigator can try a number of methods and for a number of classes of equations these methods always work. In particular integrating factors are tricky to find. An analogous but simpler situation exists for integrating inclosed form, where for instance there exists a criterion for when an exponential integral can be found in closed form. In this paper we make a beginning in several directions on these problems, for 2 variable ordinary differential equations. The case of exact differentials reduces immediately to quadrature. The next step is perhaps that of a polynomial integrating factor, our main study. Here we are able to provide necessary conditions based on related homogeneous equations which probably suffice to decide existence in most cases. As part of our investigations we provide complete algorithms for existence of and finding a basis for polynomial solutions of linear differential and difference equations with polynomial coefficients, also rational solutions for such differential equations. Our goal would be a method for decidability of whether any differential equation Mdx+Mdy=0 with polynomial M, N has algebraic solutions(or an undecidability proof). We reduce the question of all solutions algebraic to singularities but have not yet found a definite procedure to find their type. We begin with general results on the set of all polynomial solutions and integrating factors. Consider a differential equation Mdx+Ndy where M, N are nonreal polynomials in x, y with no common factor. When does there exist an integrating factor u which is (i) polynomial (ii) rational? In case (i) the solution F(x, y)=c will be a polynomial. We assume all functions here are complex analytic polynomial in some open set.

  • PDF

MULTI-BLOCK BOUNDARY VALUE METHODS FOR ORDINARY DIFFERENTIAL AND DIFFERENTIAL ALGEBRAIC EQUATIONS

  • OGUNFEYITIMI, S.E.;IKHILE, M.N.O.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제24권3호
    • /
    • pp.243-291
    • /
    • 2020
  • In this paper, multi-block generalized backward differentiation methods for numerical solutions of ordinary differential and differential algebraic equations are introduced. This class of linear multi-block methods is implemented as multi-block boundary value methods (MB2 VMs). The root distribution of the stability polynomial of the new class of methods are determined using the Wiener-Hopf factorization of a matrix polynomial for the purpose of their correct implementation. Numerical tests, showing the potential of such methods for output of multi-block of solutions of the ordinary differential equations in the new approach are also reported herein. The methods which output multi-block of solutions of the ordinary differential equations on application, are unlike the conventional linear multistep methods which output a solution at a point or the conventional boundary value methods and multi-block methods which output only a block of solutions per step. The MB2 VMs introduced herein is a novel approach at developing very large scale integration methods (VLSIM) in the numerical solution of differential equations.