• 제목/요약/키워드: linear difference differential polynomials

검색결과 5건 처리시간 0.018초

THE RESULTS ON UNIQUENESS OF LINEAR DIFFERENCE DIFFERENTIAL POLYNOMIALS WITH WEAKLY WEIGHTED AND RELAXED WEIGHTED SHARING

  • HARINA P. WAGHAMORE;M. ROOPA
    • Journal of applied mathematics & informatics
    • /
    • 제42권3호
    • /
    • pp.549-565
    • /
    • 2024
  • In this paper, we investigate the uniqueness of linear difference differential polynomials sharing a small function. By using the concepts of weakly weighted and relaxed weighted sharing of transcendental entire functions with finite order, we obtained the corresponding results, which improve and extend some results of Chao Meng [14].

STUDY OF ENTIRE AND MEROMORPHIC FUNCTION FOR LINEAR DIFFERENCE-DIFFERENTIAL POLYNOMIALS

  • S. RAJESHWARI;P. NAGASWARA
    • Journal of Applied and Pure Mathematics
    • /
    • 제5권5_6호
    • /
    • pp.281-289
    • /
    • 2023
  • We investigate the value distribution of difference-differential polynomials of entire and meromorphic functions, which can be gazed as the Hayman's Conjecture. And also we study the uniqueness and existence for sharing common value of difference-differential polynomials.

THE RECURRENCE COEFFICIENTS OF THE ORTHOGONAL POLYNOMIALS WITH THE WEIGHTS ωα(x) = xα exp(-x3 + tx) AND Wα(x) = |x|2α+1 exp(-x6 + tx2 )

  • Joung, Haewon
    • Korean Journal of Mathematics
    • /
    • 제25권2호
    • /
    • pp.181-199
    • /
    • 2017
  • In this paper we consider the orthogonal polynomials with weights ${\omega}_{\alpha}(x)=x^{\alpha}{\exp}(-x^3+tx)$ and $W_{\alpha}(x)={\mid}x{\mid}^{2{\alpha}+1}{\exp}(-x^6+tx^2)$. Using the compatibility conditions for the ladder operators for these orthogonal polynomials, we derive several difference equations satisfied by the recurrence coefficients of these orthogonal polynomials. We also derive differential-difference equations and second order linear ordinary differential equations satisfied by these orthogonal polynomials.

ORTHOGONAL POLYNOMIALS RELATIVE TO LINEAR PERTURBATIONS OF QUASI-DEFINITE MOMENT FUNCTIONALS

  • Kwon, K.H.;Lee, D.W.;Lee, J.H.
    • 대한수학회보
    • /
    • 제36권3호
    • /
    • pp.543-564
    • /
    • 1999
  • Consider a symmetric bilinear form defined on $\prod\times\prod$ by $_{\lambda\mu}$ = $<\sigma,fg>\;+\;\lambdaL[f](a)L[g](a)\;+\;\muM[f](b)m[g](b)$ ,where $\sigma$ is a quasi-definite moment functional, L and M are linear operators on $\prod$, the space of all real polynomials and a,b,$\lambda$ , and $\mu$ are real constants. We find a necessary and sufficient condition for the above bilinear form to be quasi-definite and study various properties of corresponding orthogonal polynomials. This unifies many previous works which treated cases when both L and M are differential or difference operators. finally, infinite order operator equations having such orthogonal polynomials as eigenfunctions are given when $\mu$=0.

  • PDF

EXISTENCE OF POLYNOMIAL INTEGRATING FACTORS

  • Stallworth, Daniel T.;Roush, Fred W.
    • Kyungpook Mathematical Journal
    • /
    • 제28권2호
    • /
    • pp.185-196
    • /
    • 1988
  • We study existence of polynomial integrating factors and solutions F(x, y)=c of first order nonlinear differential equations. We characterize the homogeneous case, and give algorithms for finding existence of and a basis for polynomial solutions of linear difference and differential equations and rational solutions or linear differential equations with polynomial coefficients. We relate singularities to nature of the solution. Solution of differential equations in closed form to some degree might be called more an art than a science: The investigator can try a number of methods and for a number of classes of equations these methods always work. In particular integrating factors are tricky to find. An analogous but simpler situation exists for integrating inclosed form, where for instance there exists a criterion for when an exponential integral can be found in closed form. In this paper we make a beginning in several directions on these problems, for 2 variable ordinary differential equations. The case of exact differentials reduces immediately to quadrature. The next step is perhaps that of a polynomial integrating factor, our main study. Here we are able to provide necessary conditions based on related homogeneous equations which probably suffice to decide existence in most cases. As part of our investigations we provide complete algorithms for existence of and finding a basis for polynomial solutions of linear differential and difference equations with polynomial coefficients, also rational solutions for such differential equations. Our goal would be a method for decidability of whether any differential equation Mdx+Mdy=0 with polynomial M, N has algebraic solutions(or an undecidability proof). We reduce the question of all solutions algebraic to singularities but have not yet found a definite procedure to find their type. We begin with general results on the set of all polynomial solutions and integrating factors. Consider a differential equation Mdx+Ndy where M, N are nonreal polynomials in x, y with no common factor. When does there exist an integrating factor u which is (i) polynomial (ii) rational? In case (i) the solution F(x, y)=c will be a polynomial. We assume all functions here are complex analytic polynomial in some open set.

  • PDF