• Title/Summary/Keyword: linear cutting machine (LCM) test

Search Result 5, Processing Time 0.267 seconds

Three Dimensional Numerical Analysis on Rock Cutting Behavior of Disc Cutter Using Particle Flow Code (3차원 입자결합모델을 이용한 디스크 커터의 암석절삭에 관한 연구)

  • Lee, Seung-Joong;Choi, Sung-Oong
    • Tunnel and Underground Space
    • /
    • v.23 no.1
    • /
    • pp.54-65
    • /
    • 2013
  • The LCM (Linear Cutting Machine) test is one of the most powerful and reliable methods for designing the disc cutter and for predicting the TBM (Tunnel Boring Machine) performance. It has an advantage to predict the actual load on disc cutter from the laboratory test on the real-size large rock samples, however, it also has a disadvantage to transport and/or prepare the large rock samples and to need an extra cost for experiment. In order to overcome this problem, lots of numerical studies have been performed. In this study, the PFC3D (Particle Flow Code in 3 Dimension) has been adopted for numerical analysis on optimum cutter spacing and failure aspects of Busan Tuff. The optimum cutting condition with s/p ratio of 16 and minimum specific energy of $14MJ/m^3$ was derived from numerical analyses. The cutter spacing for Busan Tuff had the good agreements with those of LCM test and numerical analysis by finite element method.

Characteristic of size distribution of rock chip produced by rock cutting with a pick cutter

  • Jeong, Hoyoung;Jeon, Seokwon
    • Geomechanics and Engineering
    • /
    • v.15 no.3
    • /
    • pp.811-822
    • /
    • 2018
  • Chip size distribution can be used to evaluate the cutting efficiency and to characterize the cutting behavior of rock during cutting and fragmentation process. In this study, a series of linear cutting tests was performed to investigate the effect of cutting conditions (specifically cut spacing and penetration depth) on the production and size distribution of rock chips. Linyi sandstone from China was used in the linear cutting tests. After each run of linear cutting machine test, the rock chips were collected and their size distribution was analyzed using a sieving test and image processing. Image processing can rapidly and cost-effectively provide useful information of size distribution. Rosin-Rammer distribution pamameters, the coarseness index and the coefficients of uniformity and curvature were determined by image processing for different cutting conditions. The size of the rock chips was greatest at the optimum cut spacing, and the size distribution parameters were highly correlated with cutter forces and specific energy.

Assessment of Cutting Performance of a TBM Disc Cutter for Anisotropic Rock by Linear Cutting Test (선형절삭시험에 의한 이방성 암석에 대한 TBM 디스크커터 절삭 성능 평가 연구)

  • Jeong, Ho-Young;Jeon, Seok-Won;Cho, Jung-Woo;Chang, Soo-Ho;Bae, Gyu-Jin
    • Tunnel and Underground Space
    • /
    • v.21 no.6
    • /
    • pp.508-517
    • /
    • 2011
  • The linear cutting test is the most reliable and accurate approach to measuring cutting forces and cutting efficiency using full-size disc cutter in various rock types. The result of linear cutting tests can be used to obtain the key parameters of cutter-head design (i.e. optimum cutter spacing, cutter forces). In Korea, LCM (Linear Cutting Machine) tests have been performed for typical Korean rock types, but these studies focused on the isotropic rocktypes. For prediction of TBM (Tunnel Boring Machine) performances in complex geological conditions including a bedded and schistose rockmass, it is important to consider the effects of anisotropy of rockmass on cutting performances and cutting efficiency. This study discusses a series of LCM tests that were performed for Asan Gneiss having two types of anisotropy angles to assess the effect of the anisotropy angle on rock-cutting performances of TBM. The result shows that the rock-cutting performances and optimum cutting conditions are affected by anisotropy angle and the effect of anisotropy on rock strength should be considered in a prediction of the cutting performances and efficiency of TBM.

Estimation of the optimum TBM disc cutter spacing by the dynamic fracture modeling (동적 파괴모델링에 의한 TBM 디스크 커터의 최적 절삭간격 예측)

  • You, Sang-Hwa;Chang, Soo-Ho;Cho, Jung-Woo;Jeon, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.1
    • /
    • pp.81-90
    • /
    • 2008
  • It is of great importance to determine the optimum cutter spacing in TBM. In order to determine the optimum cutter spacing, a series of cutting tests by linear cutting machine (LCM) are performed with changing cutter space. This study showed that a numerical method for estimating the optimum cutter spacing could be developed by AUTODYN-3D in order to overcome the limitation of LCM test. By using this method, the optimum cutter spacing of Hwangdeung granite was estimated.

  • PDF

Linear cutting machine test for assessment of the cutting performance of a pick cutter in sedimentary rocks (퇴적층 암석의 픽 커터 절삭성능 평가를 위한 선형절삭시험)

  • Jeong, Hoyoung;Jeon, Seokwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.161-182
    • /
    • 2018
  • We carried out a series of linear cutting machine tests to assess the cutting performance of a pick cutter in sedimentary rock. The specimens were Linyi sandstone from China and Concrete (rock-like material, conglomerate). Using the small scaled LCM system, we estimated the cutter force and specific energy under different cutting conditions. The cutter forces (cutting and normal) increased with penetration depth and cutter spacing in two rock types, and it was affected by the strength of specimens. On the other hand, the ratio of the peak cutter force to the mean cutter force was influenced by cutting characteristic and composition of rock rather than rock strength. The cutting coefficient was affected by the friction characteristic between rock and pick cutter rather than the cutting conditions. Therefore, the optimal cutting angle can be determined by considering of cutting coefficient and resultant force of pick cutter. The optimum cutting condition was determined from the relationship between the specific energy and cutting condition. For two specimens, the optimum s/p ratio was found to be two to four, and the specific energy decreased with the penetration depth. The result from this study can be used as background database to understand the cutting mechanism of a pick cutter, also it can be used to design for the mechanical excavator.