• 제목/요약/키워드: linear convergence

검색결과 1,329건 처리시간 0.029초

내진제약조건(耐震制約條件)을 갖는 옹벽(擁壁)의 최적설계(最適設計) (Optimum Design of Retaining Wall with Seismic Constraints)

  • 김기대
    • 한국산업융합학회 논문집
    • /
    • 제6권2호
    • /
    • pp.95-102
    • /
    • 2003
  • In this paper, optimum design is considered over the retaining wall with seismic constraints. The sequential linear programming method(SLP) is used as a rational approach to this optimum design. To make a comparison between the seismic design and the normal design, retaining wall with 4~7m height were adopted. It is shown that the seismic design is more expensive (over 30%) than the normal design for the construction cost.

  • PDF

LITFE를 이용한 얼굴영상 인식 (Face Image Recognition using the LITFE)

  • 서석배;이경화;김영호;김대진;강대성
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2001년도 하계 학술대회 논문집(KISPS SUMMER CONFERENCE 2001
    • /
    • pp.181-184
    • /
    • 2001
  • 본 논문에서는 얼굴영상의 특징추출에 적합한 LITFE (Linear Interpolated Triangle Feature Extraction)를 이용하여 얼굴영상을 인식하는 알고리즘을 제안한다. LITFE는 얼굴의 위치정보를 보존하면서 영상 분할이 가능한 특징추출 알고리즘으로, PCA (Principal Component Analysis) 의 신경회로망적 접근방법인 GHA(Genralized Hebbian Algorithm)와 병행하면 얼굴의 특징을 효과적으로 추출하여 인식할 수 있는 장점이 있다.

  • PDF

다관절 다단의 햅틱장치 제어에 관한 연구 (A study on control of the Haptic Device use for Robot Arm)

  • 박인만;김덕수;박정만
    • 한국산업융합학회 논문집
    • /
    • 제18권1호
    • /
    • pp.61-66
    • /
    • 2015
  • Force feedback control is investigated for improving the quality of the haptic feedback in virtual reality applications. We proposed method for control of the haptic device using universal serial bus. and evaluated the characteristics with experimental set.

부분 극배치 기법 (A Partial Pole Placement Method.)

  • 김성열;김진용;이정국;이금원
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2003년도 하계학술대회 논문집
    • /
    • pp.188-192
    • /
    • 2003
  • Pole placement method is widely used in controller design. For the stability of the closed loop system, user-specified desired locations including extra pole locations in the s-plane is chosen and by some procedure, feedback gain is obtained. In this paper, only desired pole location is used, and the calculation process is done for attaining linear quadratic stability. Similarly transformation is used for this. By computer simulations using MATLAB, the effectiveness is shown.

  • PDF

A FIFTH-ORDER IMPROVEMENT OF THE EULER-CHEBYSHEV METHOD FOR SOLVING NON-LINEAR EQUATIONS

  • Kim, Weonbae;Chun, Changbum;Kim, Yong-Il
    • 충청수학회지
    • /
    • 제24권3호
    • /
    • pp.437-447
    • /
    • 2011
  • In this paper we present a new variant of the Euler-Chebyshev method for solving nonlinear equations. Analysis of convergence is given to show that the presented methods are at least fifth-order convergent. Several numerical examples are given to illustrate that newly presented methods can be competitive to other known fifth-order methods and the Newton method in the efficiency and performance.

등가정하중을 이용한 구조최적설계 방법을 이용한 비선형 거동구조물의 최적설계 (Non-linear Structural Optimization Using NROESL)

  • 박기종;박경진
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1256-1261
    • /
    • 2004
  • Nonlinear Response Optimization using Equivalent Static Loads (NROESL) method/algorithm is proposed to perform optimization of non-linear response structures. It is more expensive to carry out nonlinear response optimization than linear response optimization. The conventional method spends most of the total design time on nonlinear analysis. Thus, the NROESL algorithm makes the equivalent static load cases for each response and repeatedly performs linear response optimization and uses them as multiple loading conditions. The equivalent static loads are defined as the loads in the linear analysis, which generates the same response field as those in non-linear analysis. The algorithm is validated for the convergence and the optimality. The function satisfies the descent condition at each cycle and the NROESL algorithm converges. It is mathematically validated that the solution of the algorithm satisfies the Karush-Kuhn-Tucker necessary condition of the original nonlinear response optimization problem. The NROESL algorithm is applied to two structural problems. Conventional optimization with sensitivity analysis using the finite difference method is also applied to the same examples. The results of the optimizations are compared. The proposed method is very efficient and derives good solutions.

  • PDF

사용 중 지진 가속도계의 정상 측정과 출력전압 선형비 오차율 관계 분석 (Relationship between Normal Measurement and Error Rate of Output Voltage Linear Ratio of Seismic Accelerometer in Use)

  • 김민준;조성철;정용훈;원정훈
    • 한국안전학회지
    • /
    • 제39권2호
    • /
    • pp.65-74
    • /
    • 2024
  • We analyzed the relationship between the normal measurement of the seismic accelerometer (SA) and the error rate of the output voltage linear ratio to propose an evaluation method to determine whether the SA in use is measuring normally. Utilizing a test bed, the regular operation of SA in use was evaluated using acceleration data measured through impact tests since there are no regulations regarding performance testing of SA in use. For the used SA, the error rate of the output voltage linear ratio, which is a major performance criterion, was evaluated. We analyzed common characteristics of the SA that satisfied the impact test and the performance criteria of the output voltage linear ratio error rate. The results indicated that we must consider the decreasing trend and convergence of the error rate as the measurement angle increases, ensuring that the average value of the output voltage linear ratio error rate is within 1%.

NEWTON'S METHOD FOR SOLVING A QUADRATIC MATRIX EQUATION WITH SPECIAL COEFFICIENT MATRICES

  • Seo, Sang-Hyup;Seo, Jong-Hyun;Kim, Hyun-Min
    • 호남수학학술지
    • /
    • 제35권3호
    • /
    • pp.417-433
    • /
    • 2013
  • We consider the iterative solution of a quadratic matrix equation with special coefficient matrices which arises in the quasibirth and death problem. In this paper, we show that the elementwise minimal positive solvent of the quadratic matrix equations can be obtained using Newton's method if there exists a positive solvent and the convergence rate of the Newton iteration is quadratic if the Fr$\acute{e}$chet derivative at the elementwise minimal positive solvent is nonsingular. Although the Fr$\acute{e}$chet derivative is singular, the convergence rate is at least linear. Numerical experiments of the convergence rate are given.

비선형 유한요소법에서 선탐색 알고리즘의 적용에 의한 수렴속도의 개선 (Improvement of Convergence Rate by Line Search Algorithm in Nonlinear Finite Element Method)

  • 구상완;김낙수
    • 대한기계학회논문집A
    • /
    • 제27권8호
    • /
    • pp.1281-1286
    • /
    • 2003
  • A line search algorithm to increase a convergence in Newton's method is developed and applied to nonlinear finite element analysis. The algorithm is based on the slack line search theory which is an efficient algorithm to determine initial acceleration coefficient, variable backtracking algorithm proposed by some researchers, and convergence criterion based on residual norm. Also, it is capable of avoiding exceptional diverging conditions. Developed program is tested in metal forming simulation such as forging and ring rolling. Numerical result shows the validity of the algorithm for a highly nonlinear system .

PID Type Iterative Learning Control with Optimal Gains

  • Madady, Ali
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권2호
    • /
    • pp.194-203
    • /
    • 2008
  • Iterative learning control (ILC) is a simple and effective method for the control of systems that perform the same task repetitively. ILC algorithm uses the repetitiveness of the task to track the desired trajectory. In this paper, we propose a PID (proportional plus integral and derivative) type ILC update law for control discrete-time single input single-output (SISO) linear time-invariant (LTI) systems, performing repetitive tasks. In this approach, the input of controlled system in current cycle is modified by applying the PID strategy on the error achieved between the system output and the desired trajectory in a last previous iteration. The convergence of the presented scheme is analyzed and its convergence condition is obtained in terms of the PID coefficients. An optimal design method is proposed to determine the PID coefficients. It is also shown that under some given conditions, this optimal iterative learning controller can guarantee the monotonic convergence. An illustrative example is given to demonstrate the effectiveness of the proposed technique.