• Title/Summary/Keyword: linear controller

Search Result 2,083, Processing Time 0.027 seconds

Controller of nonlinear servo system

  • Yamane, Yuzo;Zhang, Xiajun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.342-345
    • /
    • 1996
  • This paper is dealing with a design of linear controller so that the plant output is regulated to follow a reference model output when the plant equation is described by a class of nonlinear time-varying control systems.

  • PDF

Robust Controller Design for a Stabilized Head Mirror

  • Keh, Joong-Eup;Lee, Man-Hyung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.4
    • /
    • pp.78-86
    • /
    • 2002
  • In this paper, LMI (Linear Matrix Inequality) based on H$\_$$\infty$/ controller for a lire of sight (LOS) stabilization system. It shows that the proposed controller has more excellent stabilization performance than that of the conventional PI-Lead controller. An H$\_$$\infty$/ control has been also applied to the system for reducing modeling errors and the settling time of the system. The LMI-based H$\_$$\infty$/ controller design is more practical in view of reducing a run-time than Riccati-based H$\_$$\infty$/ controller. This H$\_$$\infty$/ controller is available not only to decrease the gain in PI-Lead control, but also to compensate the identifications for the various uncertain parameters. Therefore, this paper, shows that the proposed LMI-based H$\_$$\infty$/ controller had good disturbance attenuation and reference input tracking performance compared with the control performance of the conventional controller under any real disturbances.

Control of DC-Servomotor Speed by Using Fuzzy Controller (퍼지제어기를 이용한 DC 서보 모터의 속도 제어)

  • Kang, Geun-Taek;Kim, Young-Taek
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.1
    • /
    • pp.76-80
    • /
    • 1990
  • DC-servomotor acts an important role in robots and manipulatirs. But the precise control of DC-motor is difficult by a using usual linear controller because of the nonlinear characteristics of DC-motor. This study suggests the use of fuzzy controller in the control of DC-servomotor speed. The fuzzy controller is designed from a fuzzy model which can represent nonlinear systems very well. Hence the fuzzy controller is very useful in the control of nonlinear systems such as DC-motor. We construct a fuzzy model of DC-servomotor, design a fuzzy controller from the fuzzy model, and compare that with a linear controller. When we use the fuzzy controller, the static ripples are reduced and the rise time is required 20% less than in using a linear controller.

  • PDF

A non-linear tracking control scheme for an under-actuated autonomous underwater robotic vehicle

  • Mohan, Santhakumar;Thondiyath, Asokan
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.3
    • /
    • pp.120-135
    • /
    • 2011
  • This paper proposes a model based trajectory tracking control scheme for under-actuated underwater robotic vehicles. The difficulty in stabilizing a non-linear system using smooth static state feedback law means that the design of a feedback controller for an under-actuated system is somewhat challenging. A necessary condition for the asymptotic stability of an under-actuated vehicle about a single equilibrium is that its gravitational field has nonzero elements corresponding to non-actuated dynamics. To overcome this condition, we propose a continuous time-varying control law based on the direct estimation of vehicle dynamic variables such as inertia, damping and Coriolis & centripetal terms. This can work satisfactorily under commonly encountered uncertainties such as an ocean current and parameter variations. The proposed control law cancels the non-linearities in the vehicle dynamics by introducing non-linear elements in the input side. Knowledge of the bounds on uncertain terms is not required and it is conceptually simple and easy to implement. The controller parameter values are designed using the Taguchi robust design approach and the control law is verified analytically to be robust under uncertainties, including external disturbances and current. A comparison of the controller performance with that of a linear proportional-integral-derivative (PID) controller and sliding mode controller are also provided.

A Robust Control of Horizontal-Shaft Magnetic Bearing System Using Linear Matrix Inequality Technique (선형행렬부등식 기법을 이용한 횡축형 자기 베어링 시스템의 로버스트 제어)

  • 김창화;정병건;양주호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.321-330
    • /
    • 2001
  • Magnetic bearing system is frequently used for high-speed rotating machines because of its frictionless property. But the magnetic bearing system needs feedback controller for stabilization. This paper presents a robust controller design by using linear matrix inequality for magnetic bearing system which shows the control performance and robust stability under the physical parameter perturbations. To the end, the validity of the designed controller is investigated through computer simulation.

  • PDF

Non-Linear Model of Voltage Source Power Converter and Tuning Current controller (전압형 전력 변환기 비선형 모델 및 전류제어기 조정)

  • Park, Sang-Young
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.144-146
    • /
    • 1998
  • In this study Dead time equivalent resistance of Voltage source power converter is very important in current controller design. And Non-linear Modeling method can be applied in Power converter analysis. Using Describing Function method and Non-linear Resistance Modeling. Voltage Source Power Converter Bode diagram and Current controller analysis method are more reality.

  • PDF

High Performance of Self Scheduled Linear Parameter Varying Control with Flux Observer of Induction Motor

  • Khamari, Dalila;Makouf, Abdesslam;Drid, Said;Chrifi-Alaoui, Larbi
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1202-1211
    • /
    • 2013
  • This paper deals with a robust controller for an induction motor (IM) which is represented as a linear parameter varying systems. To do so linear matrix inequality (LMI) based approach and robust Lyapunov feedback are associated. This approach is related to the fact that the synthesis of a linear parameter varying (LPV) feedback controller for the inner loop take into account rotor resistance and mechanical speed as varying parameter. An LPV flux observer is also synthesized to estimate rotor flux providing reference to cited above regulator. The induction motor is described as a polytopic LPV system because of speed and rotor resistance affine dependence. Their values can be estimated on line during systems operations. The simulation and experimental results largely confirm the effectiveness of the proposed control.

Design of Longitudinal Auto-landing Guidance and Control System Using Linear Controller-based Adaptive Neural Network

  • Choi, Si-Young;Ha, Cheol-Keun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1624-1627
    • /
    • 2005
  • We proposed a design technique for auto-landing guidance and control system. This technique utilizes linear controller and neural network. Main features of this technique is to use conventional linear controller and compensate for the error coming from the model uncertainties and/or reference model mismatch. In this study, the multi-perceptron neural network with single hidden layer is adopted to compensate for the errors. Glide-slope capture logic for auto-landing guidance and control system is designed in this technique. From the simulation results, it is observed that the responses of velocity and pitch angle to commands are fairly good, which are directly related to control inputs of throttle and elevator, respectively.

  • PDF

Optimal Tuning of Linear Servomechanisms using a Disturbance Observer (외란관측기를 이용한 리니어 서보메커니즘의 최적튜닝)

  • Hong, Seong-Hwan;Chung, Sung-Chong
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.926-931
    • /
    • 2008
  • In order to design a high-performance controller with excellent positioning and tracking performance, an optimal tuning method based on the integrated design concept is studied. DOBs, feedforward controllers and CCC are applied to control the bi-axial linear servomechanism. To derive accurate dynamic models of mechanical subsystems equipped with linear servos for the integrated tuning, system identification processes are conducted through the sine sweeping. An optimal tuning problem with stability, robustness and overshoot constraints is formulated as a nonlinear constrained optimization problem. Optimal gains are obtained through the SQP method. Experimental results confirm that both tracking and contouring errors are significantly reduced by applying the proposed controller and integrated tuning method.

  • PDF