• Title/Summary/Keyword: linear array antenna

Search Result 146, Processing Time 0.026 seconds

A Study on the Shaped-Beam Antenna with High Gain Characteristic (고이득 특성을 갖는 성형 빔 안테나에 대한 연구)

  • Eom, Soon-Young;Yun, Je-Hoon;Jeon, Soon-Ick;Kim, Chang-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.1 s.116
    • /
    • pp.62-75
    • /
    • 2007
  • This paper describes a shaped-beam antenna for increasing the antenna gain of a radiating element. The proposed antenna structure is composed of an exciting element and a multi-layered disk array structure(MDAS). The stack micro-strip patch elements were used as the exciter for effectively radiating the electromagnetic power to the MDAS over the broadband, and finite metallic disk array elements - which give the role of a director for shaping the antenna beam with the high gain - were finitely and periodically layered onto it. The efficient power coupling between the exciter and the MDAS should be carried out in such a way that the proposed antenna has a high gain characteristic. The design parameters of the exciter and the MDAS should be optimized together to meet the required specifications to meet the required specifications. In this study, a shaped-beam antenna with high gain was optimally designed under the operating conditions with a linear polarization and the frequency band of $9.6{\sim}10.4\;GHz$. Two methods constructed using thin dielectric film and dielectric foam materials respectively were also proposed in order to implement the MBAS of the antenna. In particular, through the computer simulation process, the electrical performance variations of the antenna with the MDAS realized by the thin dielectric film materials were shown according to the number of disk array elements in the stack layer. Two kinds of antenna breadboard with the MDAS realized with the thin dielectric film and dielectric foam materials were fabricated, but experimentation was conducted only on the antenna breadboard(Type 1) with the MDAS realized with the thin dielectric film materials according to the number of disk array elements in the stack layer in order to compare it with the electrical performance variations obtained during the simulation. The measured antenna gain performance was found to be in good agreement with the simulated one, and showed the periodicity of the antenna gain variations according to the stack layer number of the disk array elements. The electrical performance of the Type 1 antenna was measured at the center frequency of 10 GHz. As the disk away elements became the ten stacks, a maximum antenna gain of 15.65 dBi was obtained, and the measured return loss was not less than 11.4 dB within the operating band. Therefore, a 5 dB gain improvement of the Type 1 antenna can be obtained by the MDAS that is excited by the stack microstrip patch elements. As the disk array elements became the twelve stacks, the antenna gain of the Type 1 was measured to be 1.35 dB more than the antenna gain of the Type 2 by the outer dielectric ring effect, and the 3 dB beam widths measured from the two antenna breadboards were about $28^{\circ}$ and $36^{\circ}$ respectively.

Design of a 28 GHz Switched Beamforming Antenna System Based on 4×4 Butler Matrix (4×4 버틀러 매트릭스 기반 28 GHz 스위치 빔포밍 안테나 시스템 설계)

  • Park, Seongchun;Kim, Seunghyeon;Sohn, Jihoon;Shin, Hyunchol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.10
    • /
    • pp.876-884
    • /
    • 2015
  • In this paper, a switched beamforming antenna system at 28 GHz frequency band is described for $5^{th}$ generation wireless communication. The butler matrix is used as a beamforming system and it produces linear spaced phase difference at four output ports. Array antenna is designed that can be steered in desired 4 different directions 28 GHz frequency band. Operation of designed butler matrix that composed of couplers and feedline is explained. The antenna system is designed in RO3003 substrate that has a height of 5 mil and dielectric constant of 3. The size of butler matrix is $20.3{\times}13.0mm^2$ and size of array antenna is $21.2{\times}19.9mm^2$. This system can be steered from $-34^{\circ}$ to $33^{\circ}$ and minimum sidelobe level is 12.9 dB.

Design for Dual Polarization Antenna Element using Electromagnetic-Coupled Dipole (전자결합 다이폴을 이용한 편파공용 안테나 소자의 설계)

  • ;;;;;;Hiroyuki Arai
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.128-131
    • /
    • 2000
  • This paper describes design for dual-linear polarization antenna using EMC(electromagnetic-coupled) dipole. EMC dipole has a simple element structure and it is fed by microstrip line. Vortical and horizontal polarization are determined by structure of dipole fed by microstrip line. FDTD Method is used for an analysis of antenna element. Length, width, height and offset of dipole are designed for 1-element antenna. Resonant length of diploe differs from the calculated value by a formula because of coupling effect of dipole and feed line. Radiation Power is controlled by the offset of dipole. In prectical fabrication of antenna array, a constant height of dipoles is required. Therefore, the teflon plate with height of 0.8 mm is considered in antenna element design for the vertical polarization.

  • PDF

Compact 1×2 and 2×2 Dual Polarized Series-Fed Antenna Array for X-Band Airborne Synthetic Aperture Radar Applications

  • Kothapudi, Venkata Kishore;Kumar, Vijay
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.2
    • /
    • pp.117-128
    • /
    • 2018
  • In this paper, compact linear dual polarized series-fed $1{\times}2$ linear and $2{\times}2$ planar arrays antennas for airborne SAR applications are proposed. The proposed antenna design consists of a square radiating patch that is placed on top of the substrate, a quarter wave transformer and $50-{\Omega}$ matched transformer. Matching between a radiating patch and the $50-{\Omega}$ microstrip line is accomplished through a direct coupled-feed technique with the help of an impedance inverter (${\lambda}/4$ impedance transformer) placed at both horizontal and vertical planes, in the case of the $2{\times}2$ planar array. The overall size for the prototype-1 and prototype-2 fabricated antennas are $1.9305{\times}0.9652{\times}0.05106{{\lambda}_0}^3$ and $1.9305{\times}1.9305{\times}0.05106{{\lambda}_0}^3$, respectively. The fabricated structure has been tested, and the experimental results are similar to the simulated ones. The CST MWS simulated and vector network analyzer measured reflection coefficient ($S_{11}$) results were compared, and they indicate that the proposed antenna prototype-1 yields the impedance bandwidth >140 MHz (9.56-9.72 GHz) defined by $S_{11}$<-10 dB with 1.43%, and $S_{21}$<-25 dB in the case of prototype-2 (9.58-9.74 GHz, $S_{11}$< -10 dB) >140 MHz for all the individual ports. The surface currents and the E- and H-field distributions were studied for a better understanding of the polarization mechanism. The measured results of the proposed dual polarized antenna were in accordance with the simulated analysis and showed good performance of the S-parameters and radiation patterns (co-pol and cross-pol), gain, efficiency, front-to-back ratio, half-power beam width) at the resonant frequency. With these features and its compact size, the proposed antenna will be suitable for X-band airborne synthetic aperture radar applications.

WCDMA Rreverse Link Beamforming Structure and its Performance Simulation (WCDMA 역방향 빔포밍 구조 및 성능 시뮬레이션)

  • 이재식;박영근;장태규;김재화
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.210-213
    • /
    • 2003
  • This paper presents a beamforming algorithm for the uplink application of a linear array antenna for WCDMA system. A steering beamforming algorithm is designed using a block DFT algorithm and its performance is analyzed and verified using computer simulations. Various environmental parameters such as the number of antenna elements, the number of users, the mobility of the target user, and the status of fast power control are reflected in the simulation study providing themselves as useful design and implementation guides for the reverse link beamforming of WCDMA system.

  • PDF

Design of the Dual Linear Polarized Radiation Element Using a Open-Ended Ridge Waveguide (개방된 리지 도파관을 이용한 이중 선형 편파 방사 소자 설계)

  • Ko, Ji-Whan;Chun, Jong-Hoon;Cho, Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.11
    • /
    • pp.1294-1302
    • /
    • 2008
  • A design approach for a radiation element of dual polarization, which can be implemented in the waveguide structure, is proposed. For minimization of the radiating element, the ridged waveguide type is used and for dual polarization, the microstrip type of printed dipole structure is additionally installed inside the waveguide. In order to validate the design approach, $1{\times}4$ array antenna is fabricated and its performances such as return loss, co-polarization coupling between adjacent channels, and radiation patterns are investigated. Theory and experiment are observed to be in good agreement. The radiating structure is thought to be a useful one in an application to the phased array antenna system, in particular, requiring dual polarization characteristics.

Feedback Simplification Scheme for Wireless Power Transfer Systems Based on Beamforming with Phased Array Antenna (위상배열 안테나를 이용한 빔포밍 기반 무선전력전송 시스템의 피드백 간소화 기법)

  • Roh, Tae-Rae;Kang, Gil-Mo;Shin, Oh-Soon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.3
    • /
    • pp.195-201
    • /
    • 2019
  • The effectiveness of the phased array antenna in wireless power transfer systems is due to its ability to form a beam pattern towards the desired direction. To maximize the efficiency of wireless power transfer through beamforming, the transmitter must recognize the information on the optimal transmission path. To achieve this, the transmitter usually transmits pilot signals periodically and the receiver extracts the optimal beamforming weights using the pilot signals. The receiver then feeds the beamforming weights back to the transmitter. In general, the amount of feedback increases with the number of antennas, which causes feedback overhead when there is a large number of antennas. In this paper, we propose a feedback simplification scheme based on the far-field approximation method. The simulation results are provided to validate the impact of the simplified feedback on the beam pattern.

Symmetric Microwave Lens with Uniform Insertion Loss for Broad-band and Wide Beam Steering Coverage (균일한 삽입손실을 갖는 광대역 빔 조향용 대칭형 초고주파 렌즈)

  • 김인선;이광일;오승엽
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.3
    • /
    • pp.279-287
    • /
    • 2002
  • In this paper, a symmetric microwave lens to steer wide angle and to operate at broad band frequency range for a linear phased array transmitter was designed. To get accurate beam steering performance far a linear phased array transmitter, uniform amplitude transmission characteristics of microwave lens was focused. The measured result for the insertion loss deviation between Input and output ports of microstrip lens with 8 beam ports and 8 array ports was $\pm$3.1 ㏈ over 6~18 ㎓ band, which was very uniform characteristics. Using 8 elements linear array antenna, it was confirmed the radiation beam could be steered over $\pm$60$^{\circ}$ in azimuth. And the measured lens performance data and multi-beam steering pattern were presented.

Performance Evaluation of Cascade AOA Estimator Based on Uniform Circular Array

  • Kim, Tae-yun;Hwang, Suk-seung
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.2
    • /
    • pp.65-70
    • /
    • 2020
  • For a wireless communication system, the angle-of-arrival (AOA) of the signal has a variety of applications. The signal AOA is estimated utilizing various antenna array structure such as Uniform Linear Array (ULA), Uniform Rectangular Array (URA), and Uniform Circular Array (UCA). In this paper, we introduce a cascade AOA estimation algorithm based on the UCA, which is consisted of CAPON and Beamspace MUSIC. CAPON is employed to estimate approximate AOA groups including multiple AOA signals and Beamspace MUSIC is employed to estimate detailed signal AOAs in the estimated AOA groups. In addition, we provide the computer simulation results for verifying and analyzing the performance of the cascade AOA estimator based on UCA.

A Study on the Improvement of the Directivity for Rectangular Microstrip Patch Array Antennas Conformed to a Cylindrical Surface (원통면에 정합-배열된 장방형 마이크로스트립 패치 안테나의 지향성 개선을 위한 연구)

  • 고광태;구연건
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.5 no.2
    • /
    • pp.46-54
    • /
    • 1994
  • In this paper, an analysis and design method is proposed, which is to improve the directivity of microstrip array antennas conformed to a cylindrical surface. In the case of forming an arc-array in the circumferential direction on a circula-cylinder surface, the circular-cylinder can be approximated to a polygonal-pillar and on each pillar-planes the sub-arrays, Dolph-Tschebyscheff array and uniform array with a beam steered in the desired direction, would make a sharp directivity for the total cylin- drical array antenna. And the radiation pattern according to the type of its sub arrays is analyzed and compared using the cylindrical-cavity codel. A cylindrical microstrip array antenna, with 12 elements and uniform arra as a sub-array which have an equal distance$\lambda_0$/2between the elements, is manufactured and conformed to a cylinder with radius of 6 The measured data of side lobe level, HPBW and FNBW are - 13dB, $9^{\circ}$, and $15{\circ}$, ,respectively. This result shows a good improvement on the directivity comparing with a linear array.

  • PDF